简介:正如傅里叶变换采用正弦基,单频信号能够在频域形成峰值,分数阶Fourier变换采用线性调频基,线性调频(LFM)信号能够在分数阶Fourier域上实现聚焦,利用此聚焦性通过搜索峰值可实现LFM信号检测和参数估计.通常采用步进式搜索方法,效率低下.为了克服该缺点,通过对分数阶Fourier域优化问题本质的研究,将混沌优化算法引入到分数阶Fourier域极值搜索中.仿真结果表明:本文的方法优于传统的步进式搜索法.
简介:研究完整力学系统的Noether对称性、Lie对称性和形式不变性,以及由它们导致的Noether守恒量、Hojman守恒量和一类新型守恒量。
简介:在一类高维映射中实现了由Iooss等人提出的映射不变圈的算法.首先分析了不变圈的分岔条件,然后通过Fredholm择一方法分析了在计算不变圈过程中出现的一类方程解的存在性,再根据不变圈上映射到自身的不变性,通过分析振幅各阶项的系数,最终在一高维映射中实现了不变圈的计算。
简介:针对一类混沌系统,研究了参数未知的混沌系统的广义同步.基于lyapunov稳定性定理和自适应控制方法,给出了自适应控制器和参数自适应律的解析表达式.将该方法应用于参数未知的新混沌系统,理论证明了该方法可以使新混沌系统达到渐近的广义同步,并且可以辨识出系统的未知参数.数值模拟进一步证明了该方法的有效性.
简介:非线性输出频率响应函数是由Voherra级数发展而来的一个新概念.对一类具有反对称阻尼特性的隔振器,通过该概念推导出了振动传递性与系统非线性参数之间的显式解析关系;进而系统地研究了非线性阻尼参数对隔振器的力传递性能和位移传递性能的影响.研究结果表明,虽然非线性隔振器在受正弦信号激励下会出现高次倍频分量,但对于其传递性能的评估仍可简单地通过系统输入和输出信号的基频分量之间的关系来衡量;另外,反对称非线性阻尼能够有效地抑制隔振器在共振区的力传递性和位移传递性,而在非共振区则基本无抑制效果.研究结果对于具有反对称阻尼特性的隔振器的分析与设计具有重要意义.
简介:提出了一个新的四维自治类新混沌系统.首先在整数阶下分析了该系统的基本动力学特性.并利用数值仿真、功率谱分析了当参数固定时,分数阶新混沌系统随微分算子阶数变化时的动力学特性.研究表明:当微分算子阶数为0.85时,分数阶新系统随参数变化经短暂混沌和边界转折点分叉而进入混沌.针对一类结构部分未知分数阶混沌系统,基于Chebyshev正交函数神经网络,稳定性理论[14]和分数阶PI滑模面构造方法设计了一种新型的含有补偿器的自适应非线性观测器,实现了分数阶新混沌系统的投影同步.数值仿真验证了设计方法的有效性.