简介:熵在描述随机系统的演变、不稳定性、无序性或混乱程度以及信息传递方面起着重要的作用.本文对非高斯噪声驱动的一类耗散动力系统的信息熵演化进行了研究,文中通过线性变换的方法简化了所研究系统的FPK方程,然后根据Shannon信息熵定义推导出了该耗散动力系统随时间演化信息熵的精确表达式,最后分析了非高斯噪声和系统耗散参数对系统信息熵的影响.
简介:将同伦理论和参数变换技术相结合提出了一种可适用于求解强非线性动力系统响应的新方法,即PE-HAM方法(基于参数展开的同伦分析技术).其主要思想是通过构造合适的同伦映射,将一非线性动力系统的求解问题,转化为一线性微分方程组的求解问题,然后借助于参数展开技术消除长期项,进而得到系统的解析近似解.为了检验所提方法的有效性,研究了具有精确周期的保守Duffing系统的响应,求出了其解析的近似解表达式.在与精确周期的比较中,可以得出:在非线性强度α很大,甚至在α→∞时,近似解的周期与原系统精确周期的误差也只有2.17%.数值模拟结果说明了新方法的有效性.
简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.
简介:基于压电效应设计了一种包含屈曲梁、质量块和非线性弹簧的新型压电俘能器结构,并对其进行了振动响应分析.首先基于Euler—Bernoulli梁理论,利用Hamihon原理建立了压电俘能器结构的非线性动力学方程,通过Galerkin离散后数值分析了结构参数对系统一阶固有频率的影响;进一步利用多尺度法对系统进行摄动分析,研究了系统的稳态幅频特性,数值分析了各系数对幅频响应曲线的影响,结果表明该结构在简谐激励作用下会存在多种跳跃现象;最后数值分析了压电俘能器的发电性能,讨论了激励幅值和初始静挠度对发电电压的影响.
简介:研究Birkhoff系统Noether逆定理.提出对Birkhoff系统由已知的守恒量导出Noether对称性的一般解法,指出一般解法中的困难.通过引入守恒量和对称性直接相关的辅助方程,给出逆定理的特殊解法.举例说明了所得结果的应用.
简介:提出广义斜梯度系统并研究Birkhoff系统的广义斜梯度表示.给出系统成为广义斜梯度系统的条件.利用广义斜梯度系统的性质来研究系统解的稳定性.举例说明结果的应用.
简介:应用Liapunov-Floquet变换,将参数振动系统转换成一个时不变系统,结合极点配置法,构成一个控制品质稳定的振动主动控制系统.并以机翼与航空发动机转子耦合振动为例,叙述参数振动主动控制结构以及控制系统稳定性的仿真结果.
简介:用数值模拟的方法,研究了Host-Parasitoid模型.该模型是一类非线性离散系统,反映了在一定的时间和空间内,寄生虫和寄宿主之间的生存状态.通过调节各种影响下的分岔参数,可以观察到系统具有周期泡,倍周期分叉,间歇混沌和Hopf分岔等复杂非线性动力学现象,揭示了系统通向混沌的途径.利用不同周期遍历下的奇怪吸引子和具有分形边界的吸引盆对系统的非线性特性进行了深入的探讨.最后利用参数开闭环控制法对系统的混沌状态进行了有效的控制.数值仿真和理论分析表明,选择相应的控制参数可将该系统的混沌状态控制到不同的稳定周期运动.