学科分类
/ 1
10 个结果
  • 简介:针对RockingBlock中的线碰撞问题,首先采用离散化思想将线碰撞问题离散为多点碰撞系统,而后基于LZB方法对所建多点碰撞系统进行动力学建模.仿真结果表明随着离散点数的增加,基于LZB方法的多点碰撞模型能够很好地刻画RockingBlock中的相关线碰撞问题,且精度与离散程度紧密相关.

  • 标签: 线碰撞 多点碰撞 非光滑动力学 ROCKING Block
  • 简介:考虑了高架索的倾斜角、货物悬挂张力周期波动等因素的影响,建立了海上横向干货补给高架索系统内振动的3自由度动力学模型.对模型进行1阶Galerkin模态截断,对离散后的动力学模型惯性项解耦,得到了高架索内振动的3自由度常微分形式的非线动力学模型.借助Mathematica程序,对系统进行数值分析,研究表明货物摆动会引起高架索和货物大幅横向的振动.

  • 标签: 摆动 Galerkin截断 惯性耦合 面内振动
  • 简介:基于模态叠加理论,通过桥梁多个截面处加速度响应数据,计算得到桥梁受移动荷载作用下的模态加速度.根据d'Alembertian原理,桥梁截面任意时刻的动弯矩可看作是任意时刻受惯性分布力和移动荷载作用下的静弯矩.利用影响线,建立起移动荷载与弯矩之间的关系,提出了一种利用弯矩影响线识别移动荷载的方法.算例表明,当荷载只有一个时,可由单点弯矩直接识别,当有多个移动荷载时,可基于多个截面的弯矩数据,利用最小二乘法可以有效的识别出任意时刻作用于桥梁上的移动荷载值.该方法避免了求解桥梁的动力学微分方程,识别精度高且过程简单,适合于工程应用.

  • 标签: 荷载识别 影响线 移动荷载 模态叠加原理
  • 简介:动力学和控制系统中往往包含有不确定性参数,为此提出了一种基于随机响应面的不确定性参数灵敏度分析方法,以量化参数不确定性对响应变异性的影响.文中首先利用随机响应建立不确定性参数和响应之间的表达式,然后通过求偏导方式推导参数的灵敏度系数,该系数综合反映了参数均值和标准差的影响.最后通过一根包含几何、材料不确定参数的数值梁来验证所提出方法,并与方差分析法结果进行了比较.

  • 标签: 不确定性参数 灵敏度分析 随机响应面 灵敏度系数 方差分析
  • 简介:利用压电材料的正压电效应与逆压电效应对悬臂板结构复合材料机翼进行观测与颤振抑制.采用不同的压电材料分别作为作动器与传感器,建立了含有压电层的复合材料层合板的有限元模型,采用偶极子网格法(DLM)计算升力面的亚音速非定常空气动力,用Roger近似法对频域空气动力进行有理化近似,在此基础上建立了力-电-气动耦合系统的控制方程.针对多输入多输出(MIMO)系统,设计LQG最优控制律,对比系统的开、闭环颤振特性.应用Runge-Kutta法求解系统的时域动响应,数值仿真验证了该方法对颤振抑制的有效性.

  • 标签: 压电材料 智能结构 颤振主动抑制 有限元 LQG控制
  • 简介:建立了两自由度两碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动,通过对两自由度两碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以两自由度两碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,两自由度两碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。

  • 标签: 碰撞振动 两点碰撞 周期运动 POINCARE映射 分叉 混沌
  • 简介:为研究权衡结构刚度与低阶振动频率的飞行器升力最优结构设计,提出两种多目标拓扑优化方案(约束法、结合约束法与评价函数法).基于变密度方法,在约束法方案中将多目标优化转化为设定参考点位移约束和低阶振动频率约束下,求解结构质量最小化的优化问题.在结合约束法与评价函数法方案中,定义组合柔度指数为评价函数(结构柔度与振动频率的函数),将多目标优化转化为设定低阶振动频率约束和体积分数约束下,求解结构最小组合柔度指数的优化问题.结果表明两种方案的优化结果具有一定的相似性,各有所长.优化设计不仅减轻了升力结构重量,而且提高了结构的一、二阶振动频率.

  • 标签: 多目标 拓扑优化 约束法 评价函数法
  • 简介:在辛体系下利用精细积分对矩形波导纵向排列介质层PGB结构进行分析的基础之上,用响应方法对滤波器进行了优化设计.采用棱单元对波导的横截面进行离散,然后导向哈密顿体系,运用基于黎卡提微分方程的精细积分求出一段介质层和一段空气层的出口刚度阵,再将两区段合并得到一个周期段的出口刚度阵,从而可对所有周期进行合并以对问题求解.在分析的基础上建立了滤波器的优化设计模型,利用响应方法将目标函数和约束函数近似显式化,运用二次规划法对优化模型进行求解,得到了滤波性能最优的设计参数.算例表明本文方法是可行有效的.

  • 标签: 波导 PBG结构 滤波器 精细积分 HAMILTON体系 响应面方法
  • 简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.

  • 标签: 双Hopf分叉 蜂窝夹层板 不变环面 周期解
  • 简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.

  • 标签: 最小势能原理 最小余能原理 弹性动力学 动力学问题 平衡状态 理论基础