简介:苏(1,1)动态对称具有在在理论、适用的物理分析无界的量系统的基本重要性。在这份报纸,我们学习与苏一起与量系统联系的概括协调状态的控制(1,1)动态对称。在苏上基于一个假Riemannian度量标准(1,1)组,我们为最小化驾驶系统到需要的最后的状态的控制的领域fluence获得必要条件。进一步的分析证明候选人最佳的控制答案能被分类进正常、反常的extremals。当控制Hamiltonian是非寓言的时,反常extremals能仅仅是经常的函数,当正常extremals能被Weierstrass椭圆形的函数根据控制Hamiltonian的parabolicity表示时。作为一种特殊情况,最大地挤压一个概括协调状态的最佳的控制解决方案是一个正弦曲线领域,它与在实验室被使用的一致。
简介:以两对边简支另两对边自由的功能梯度材料板为研究对象,首先建立了考虑材料物性参数与温度相关的、在热/机械载荷共同作用下的几何非线性动力学方程,采用渐进摄动法对系统在1:1内共振-主参数共振-1/2亚谐共振情况下的非线性动力学行为进行了摄动分析,得到系统的四自由度平均方程,并对平均方程进行数值计算,分析外激励对系统非线性动力学行为的影响,发现在一定条件下通过改变外激励可以改变系统的运动形式,产生混沌运动.另外,第二阶模态的幅值远比第一阶模态的幅值大,这应该是两阶模态耦合产生内共振的结果,因此,研究该类结构的非线性动力学行为时不应该只考虑一阶模态,而应考虑到前两阶甚至更多阶模态的相互作用,以便于更好地利用或控制其运动形式.
简介:这份报纸与滑动模式控制进L1的集成论述一个适应控制计划适应控制建筑学,它提供好追踪表演以及坚韧性againstmatched无常。Slidingmode控制在L1被用作一条适应法律适应控制建筑学,它被看作在估计的状态和真实状态之间的错误动力学的虚拟控制。当维持控制精确性时,在控制法律设计的低通行证的过滤机制在适应法律阻止一个不连续的信号出现在实际控制信号。由把滑动模式控制用作错误动力学的虚拟控制并且介绍低通行证的过滤控制信号,啁啾的效果被消除。在靠近环的适应系统和靠近环的参考书系统之间的性能界限在这份报纸被描绘。数字模拟被提供表明介绍适应控制计划的表演。
简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积性,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.
简介:基于一个特殊的Painleve-Backlund变换和多线性变量分离方法,分析了(2+1)维非线性广义Borer-Kaup(GBK)系统,求得了该系统具有若干任意函数的变量分离严格解.根据得到的变量分离严格解,并通过选择解中的任意函数,引入恰当的局域函数和多值函数,找到了GBK系统一种新的具有实际物理意义的半包局域相干结构,如海洋表面波,并简要地讨论了这种半包局域相干结构的一些特殊的演化性质.结果表明:这种半包局域相干结构相互作用后,完全保持它们原有的速度、波形和波幅,即它们的演化性质是完全弹性的.
简介:中心直裂纹巴西圆盘试样可以用于脆性材料在纯Ⅰ型、纯Ⅱ型以及Ⅰ-Ⅱ复合型载荷下的动态断裂韧度的测试.通过改变径向冲击的加载角口(加载方向相对于裂纹的倾斜角),可以方便地实现不同的Ⅰ、Ⅱ型动态断裂实验.本文用有限元软件ANSYS对试样进行动态复合型断裂模拟分析,研究了不同载荷、不同材料以及不同试样尺寸对动态无量纲应力强度因子的影响,得到了纯Ⅱ型加载所对应的加载角θa的近似计算公式.对于在斜坡载荷作用下的复合型断裂,Ⅰ、Ⅱ型应力强度因子具有相似的时间历程曲线,其比值逐渐趋近于一个常数.本文给出了不同无量纲裂纹长度的试样在不同加载角下对应的Ⅰ、Ⅱ型无量纲应力强度因子的比值K1(t)/KⅡ(t)(该比值称为复合比),利用该复合比,可以通过应变能密度因子准则求出试样的起裂角β0,得到的结果与文献给出的试验结果吻合得很好.
简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton型变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton型变分原理的泛函与1类变量(u,v,w)非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩提出的一条简单而统一的新途径,系统地建立了平面框架结构折线型弹塑性动力学的各类非传统Hamilton型变分原理.文中首先给出平面框架结构折线型弹塑性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到平面框架结构折线型弹塑性动力学的虚功原理,而且通过所给出的广义Legendre变换,还能系统地成对导出平面框架结构折线型弹塑性动力学的5类变量分原理的互补泛函,以及1类变量和相空间非传统Hamilton型变分原理的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.