学科分类
/ 1
8 个结果
  • 简介:结构振动测试和损伤诊断中,较易得到结构的低阶模态信息,但低阶模态信息主要反映结构的整体性能,对结构局部损伤不敏感.本文主要研究框架结构高阶模态特性,并通过高阶模态米反映结构的局部特征,实现框架结构损伤诊断.研究中采用理论模态分析和实验模态分析相结合的方法.理论模态分析表明框架结构存在模态密集区且高阶模态具有局部特征.采用局部激振方法对一个钢筋混凝土框架结构模型施加激励,通过实验模态分析获取高阶局部模态信息.结果表明最大能量高阶模态可以识别框架柱的刚度变化.

  • 标签: 模态分析 高阶模态 局部模态 参数识别 框架结构
  • 简介:以沉浮和俯仰自由度上具有间隙立方结构非线性的二元机翼模型为例,考虑系统的结构阻尼,建立了系统的非线性动力学方程.通过修正的三阶活塞理论模拟了超声速流中机翼的非定常气动力和气动力矩.引入无量纲参数将系统动力学方程无量纲化,通过数值模拟得到了二元机翼的时域响应和系统的相轨迹变化规律.通过系统的分岔图得到了无量纲参数和系统周期运动振幅幅值的关系.研究结果表明,当无量纲流速增大至临界颤振速度时出现极限环振动,系统由稳定运动过渡到周期振动,继续增大无量纲流速会有更加复杂的动力学行为.

  • 标签: 极限环颤振 活塞理论 间隙非线性 分岔
  • 简介:在简单介绍WH-800型离心机基本结构及工作原理的基础上,介绍了基于重构吸引子轨迹矩阵的奇异值分解技术,并引入自相关函数对现有奇异值分解技术加以改进.通过对现场实测故障信号的分析,表明改进的奇异值分解技术具有很好的降噪效果,能在强噪声背景环境下准确提取设备的故障特征信号,为离心机的故障诊断提供了一种新的思路.

  • 标签: 离心机 奇异值分解 降噪 故障诊断
  • 简介:本文引入自适应多尺度熵的方法,并结合当前常用的经验模型分解的方法,使得数据尺度能自适应的被获取.通过从原数据中不断移除低频或高频成分,自适应多尺度熵能够在“从粗糙到精细”或是“从精细到粗糙”的尺度下用样本熵估计求得.模拟结果用来确认了其有效性,同时我们将其应用到脑死亡诊断中,用来区分脑死亡病人和昏迷病人在脑电信号上的不同.

  • 标签: 脑电信号 脑死亡诊断 自适应多尺度熵 样本熵
  • 简介:轮胎作为车辆与路面接触的唯一载体,其力学特性是车辆动力学响应分析和控制的重要基础.目前仿真研究中所使用的轮胎模型多为稳态模型,不能精确地描述轮胎的动态特性.因此,将动态轮胎模型应用于车辆动力学仿真软件中,对于整车动力学仿真和研究具有重要的作用.多体动力学软件Adams中自带的轮胎摩擦模型为静态模型,它将摩擦系数视为一个静态值,而实际轮胎与路面之间的摩擦是动态变化的,应为相对速度和位移的动态函数,所以本文以基于LuGre动态轮胎模型,应用Matlab/Simulink软件构建动态轮胎模块,通过接口与Adams/Car连接,进行整车模型与Simulink轮胎模型的同步联合仿真,实现轮胎与路面动态接触的历程的模拟,提高车辆系统仿真的精度.

  • 标签: 车辆动力学 动态轮胎模型 联合仿真
  • 简介:用单一理论和方法对复杂系统进行故障诊断效果不太好.文章讨论了基于神经网络和模糊系统的故障诊断以及它们之间结合方式的特点,提出了一种保障工业生产安全可靠运行的有效方法:分级故障诊断算法+过程监控与报警,仿真并设计了基于工控网络的工业过程故障诊断与报警系统.研究表明基于径向基函数神经网络+模糊逻辑的算法具有较快的训练速度和较好的泛化能力,可识别多回路故障.

  • 标签: 故障诊断 神经网络 模糊逻辑 工业过程
  • 简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.

  • 标签: 双Hopf分叉 蜂窝夹层板 不变环面 周期解
  • 简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.

  • 标签: 周期解 次谐Melnikov函数 周期变换 薄板