学科分类
/ 3
45 个结果
  • 简介:如今,每个人都或多或少有点。隐私。不想被他人知晓。那应该如何保护呢?除了借助专业的隐私清理或者加密工具外,其实.动动手,挖掘一下我们经常使用的软件,也会有很大的收获,比如迅雷新版就具有“私人空间”,而QQ电脑管家也具备。文件保险柜’的功能,下面一起来看看。

  • 标签: 私人空间 隐私 挖掘 加密工具 保险柜
  • 简介:在2003和2004年,数码相机的销量创造了历史新高,而多功能一体机也受到了用户的青睐。受这两种产品的冲击,用户对数码影像和商务办公应用的需求正在被分流,原来扫描仪的主力市场家用扫描仪市场开始出现滑坡,这在一定程度上导致了扫描仪市场开始出现”需求”危机,中国扫描仪市场出现下滑。

  • 标签: 扫描仪 数码影像 扫描速度 分辨率
  • 简介:随着SQLServer2005本发布的临近,现在是时候讨论它为数据库开发人员带来的一些新特性了。为了激发您的好奇心,最好还是从SQLServer2005AnalysisServices的数据挖掘新特性开始吧!其中,您将会发现它改进了两个现有算法,引入了五个新算法,并增加了十多个可视化界面帮助处理数据关联。如果只是粗略的看一眼,则会错过所有的强大功能。

  • 标签: Analysis Services 数据挖掘 特性 Server 揭秘
  • 简介:随着数据库应用的不断深化,数据库的规模急剧膨胀,人们需要对这些数据进行分析,从中发现有价值的信息。但是数据库管理系统本身却没有提供有效的工具和方法来利用这些数据,因此数据挖掘成为当今研究的热点。本文即以混合遗传算法为基础对数据挖掘中的算法问题进行系统研究。

  • 标签: 数据挖掘 遗传算法 模拟退火算法 混合遗传算法
  • 简介:半结构化数据是网络中一种重要的数据形式,也是进行数据挖掘的重要基础。因此要对Internet上巨量的数据进行数据挖掘,半结构化数据及模型是前提。本文介绍了半结构化数据的相关概念及其数据模型。

  • 标签: 半结构化数据 数据挖掘 数据模型
  • 简介:本文作者从实际应用出发,对现存数据挖掘决策树分类方法进行了研究,并应用到系统当中,实现了决策支持模块。关键词数掘挖掘;决策树算法;改进;实现中图分类号TP301.6文献标识码A文章编号1007-9599(2010)04-0000-02DataMiningDecisionTreeImprovement&ImplementationXiaYan,ZhouXiaohong,WangDong(ChangchunTechnologyCollege,Changchun130033,China)AbstractTheauthorstudiedonexistingDataMiningdecisiontreeclassificationmethodbasedonthepracticalapplication,andappliedtothesystem,achievedadecisionsupportmodule.KeywordsDataMining;Decisiontreealgorithm;Improve;Achieve随着数据库技术的不断发展及数据库管理系统的广泛应用,数据库中存储的数据量急剧增大,在大量的数据背后隐藏着许多重要的信息,如果能把这些信息从数据库中抽取出来,将会产生重要的作用。因此,数据挖掘涉及的学科领域逐渐扩大,数据挖掘的方法也在不断地改进和提高。分类在数据挖掘中是一项非常重要的任务,分类算法可以分为决策树分类算法、遗传算法、神经网络方法、K-最近邻分类算法等。这里,以疾病防控与儿童免疫管理系统中决策支持子系统的开发过程为例,对决策树分类算法的改进及在实际中的应用进行阐述。一、数据选取和数据预处理在本系统中,以预防接种中遇到异常反应后记录的“异常反应调查表”中的数据为例进行说明。具体实现过程详细说明首先输入训练集,由于在真实的SQLServer数据库当中,为了降低存储要求和减少存储时间,并非真正存储每个数据项的属性值,而是用存储数字来对应相应的意义,如在数据库的数据表中,“性别”字段中“1”代表“男”、“2”代表“女”,反应到程序页面时再映射回原来的值,为了说理清晰又限于篇幅,这里只将所有数据集中有代表性的十几组数据作为分类模型创建的输入训练集。表1判断是否需要计划外加强免疫的属性表儿童编号月龄出生状态常住地上次注射后反应是否需要计划外加强免疫0405102<=2正常产城市无不良反应否0405495<=2正常产农村无不良反应否0401342>5正常产城市无不良反应是04054352…5正常产城市轻度反应是04065342…5非正常产城市重度反应是04072342…5非正常产农村重度反应否0401544>5非正常产农村重度反应是0408519<=2正常产城市轻度反应否0404566<=2非正常产城市重度反应是04035472…5非正常产城市轻度反应是0401534<=2非正常产农村轻度反应是0405856>5正常产农村轻度反应是0409533>5非正常产城市无不良反应是04053442…5正常产农村轻度反应否二、生成决策树对训练集的每一个属性,计算其信息增益。以“月龄”属性为例,每个结点中的正反例的个数分别为[2,3]、3,2、4,0,分别计算如下info2,3==0.971;info3,2==0.971;info4,0=0;计算信息熵E(月龄)==0.693;计算该属性的信息增益量,选取信息增益最大的属性为节点,按该属性的值划分数据集合Gain(月龄)=Info(9,5)-E(月龄)=0.940-0.693=0.247;同理,对“注射反应”属性、“出生状态”属性、“常住地”属性都可计算每个结点的正反例的个数(由于篇幅有限,不作计算)。通过对各属性信息增益的计算结果,选择“月龄”属性作为根节点,然后划分“月龄<=2”的所有可能性。计算当“月龄<=2”时,“注射反应”、“出生状态”、“常住地”的信息增益值Gain(注射反应)=Info(2,3)-E(注射反应)=0.971-0.4=0.571;Gain(出生状态)=Info(2,3)-E(出生状态)=0.971-0=0.971;Gain(常住地)=Info(2,3)-E(常住地)=0.972-0.951=0.020;同理考虑“月龄>5”的情况,由于“月龄>5”时,各个节点都是纯节点,所以不再划分。三、产生决策规则遍历决策树,输出叶结点类属性值,用IF—THEN形式表达为IF(月龄2…5AND注射反应=无)THEN(类别=是)IF(月龄2…5AND注射反应=轻)THEN(类别=是)IF(月龄2…5AND注射反应=重AND出生状态=正常产)THEN(类别=是)IF(月龄2…5AND注射反应=重AND出生状态=非正常产AND常住地=城市)THEN(类别=否)IF(月龄2…5AND注射反应=重AND出生状态=非正常产AND常住地=农村)THEN(类别=是)……依此类推,共可产生十三条规则。四、决策支持子系统的分析用上述基于决策树的分类算法所得到的模型生成的规则来预测测试集中的未知数据属于哪一类,并通过该模型的测试结果与实际情况相吻合的准确率来判断该决策树是否有效。首先,用整个数据集中2/3的数据作为训练集按照基于决策树的分类算法来建立模型,生成一棵决策树。然后,用余下的1/3的数据作为测试集,通过创建的模型进行预测,并将预测结果和实际值进行比较。如果准确率达到或超过事先确定的阈值,则可以认定该模型对于数据分类是有效的,能够在实际中应用;反之,则认定该模型的分类效果不好,需要按以上步骤来重新判断,直到分类准确率达到预定的阈值为止。在本系统中,经过测试预测准确率已达到87%,在可以接受的范围内,所以算法是有效、可行的。参考文献1陈文伟,黄金才.数据仓库与数据挖掘.人民邮电出版社,20042王万森.人工智能原理及应用.电子工业出版社,20003范明,孟小峰.数据挖掘——概念与技术.机械工业出版社,2001作者简介夏琰(1980-),女,吉林长春人。长春职业技术学院信息技术分院,教师,讲师,硕士,研究方向为计算机应用。

  • 标签:
  • 简介:在信息化时代,数据是企业生产和运行的基础,其质量好坏直接影响着企业的生存和效益。Internet已经成为一个巨大的数据仓库,为了确保我们所利用的web文本资源的高质量,本文介绍了利用web内容离群点挖掘技术审查Web文本内容,提高数据质量的方法,并且取得了较好的实验结果。

  • 标签: 内容质量 数据挖掘 离群点 N-GRAM
  • 简介:摘要在信息化时代,数据是企业生产和运行的基础,其质量好坏直接影响着企业的生存和效益。Internet已经成为一个巨大的数据仓库,为了确保我们所利用的Web文本资源的高质量,本文介绍了利用Web内容离群点挖掘技术审查Web文本内容,提高数据质量的方法,并且取得了较好的实验结果。

  • 标签: 内容质量 数据挖掘 离群点 n-gram
  • 简介:数据挖掘是数据库常用技术之一,用其解决传统数据操控系统不足,可提现出计算机服务器的优越性能,摆脱早期用户处理数据流程的不足之处。为了充分体现数据挖掘技术应用优势,更好地服务于广大计算机用户。本文分析了数据挖掘技术现实作用,提出数据挖掘自动化控制技术特点,设计符合当代用户使用需求的自动化控制平台。

  • 标签: 数据挖掘 自动化 控制平台 设计
  • 简介:信息技术的发展推动了档案事业的发展,而数据挖掘技术在档案管理系统中的应用是为了提高档案利用率,实现档案服务的必然。本文从数据挖掘技术的相关内容入手,论述了数据挖掘技术的基础知识,并结合数据挖掘技术在档案管理系统中的具体应用进行了分析与探讨。

  • 标签: 数据挖掘技术 档案管理系统 档案事业
  • 简介:本文首先讨论了数据挖掘技术,给出了一种企业决策系统。并就决策系统的构成、流程和采用的数据挖掘技术进行了探讨。关键词数据挖掘;数据仓库;企业决策系统中图分类号N37文献标识码A文章编号1007-9599(2010)04-0000-01ResearchofDataMiningTechnologyinBusinessDecision-makingSystemShiDongsheng(InnerMongoliaUniversity,Information&EngineeringTechnologyCollege,InnerMongolia,Baotou014010,China)AbstractThispaperdiscussesdataminingtechnology,presentsabusinessdecisionsystem.Decision-makingsystemoncomposition,processanduseofdataminingtechniquesarediscussed.KeywordsDatamining;Datawarehouse;Businessdecision-makingsystem随着计算机管理信息系统的飞速发展和广泛应用,企业生产经营的自动化水平不断提高,大大提高了工作效率。但企业业务系统运行所产生的大量原始数据是企业生产经营活动的真实记录,不能为本企业加以有效的统计、分析及评估,无法将这些数据转换成企业有用的信息、为企业战略决策提供参考和支持。数据挖掘正是在这样的应用需求环境下产生并迅速发展起来的,它的出现为智能地把海量数据转化为有用的信息和知识提供了新的思路和手段,设计开发基于数据挖掘的企业决策系统是合理解决这一问题,提升企业综合竞争力的最佳对策。一、数据挖掘技术数据挖掘,是指从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们不知道的、但又是潜在有用的信息和知识的过程。它是数据库研究中的一个新领域,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术,把人们对数据的应用从低层次的查询,提升到从数据中挖掘知识,提供决策支持的层级。数据挖掘一般由数据准备、挖掘操作、结果表达和解释三个主要阶段组成。在数据准备阶段应集成多个运作数据源中的数据,解决语义模糊性、处理遗漏数据、清洗脏数据。挖掘阶段是一个假设产生、合成、修正和验证传播的过程,也是上述三个阶段的核心。结果表达和解释阶段根据最终用户的决策目的把提取的有用信息正确地表达出来。数据挖掘的方法和技术可大致划分为三类统计分析、知识发现、可视化技术等。统计分析用于检查异常形式的数据,然后利用统计模型和数学模型来解释这些数据,统计分析方法是目前最成熟的数据挖掘工具。而知识发现则着眼于发现大量数据记录中潜在的有用信息或新的知识,属于所谓“发现驱动”的数据挖掘技术途经。知识发现常用的方法有人工神经网络、决策树、遗传算法、模糊计算或模糊推理等。数据质量、可视化数据的能力、极大数据库尺寸、数据挖掘者的技能、数据的粒度都是影响知识发现方法的重要因素。可视化技术则采用直观的图形方式将信息模式、数据的关联或趋势呈现给决策者,决策者可以通过可视化技术交互式地分析数据关系。二、基于数据挖掘的企业决策系统数据挖掘面对的是经初步加工的数据,使得数据挖掘更专注于知识的发现;而数据仓库用于完成数据的收集、集成、存储、管理等工作,两者必须有机结合起来使用。基于数据挖掘的企业决策系统主要由数据库、数据仓库、数据仓库管理模块、知识库、知识发现模块、数据挖掘工具、人机交互模块构成(如下图所示)。系统的输入主要源于经过初步处理的数据库数据以及存储在知识库中的历史知识和经验;数据仓库管理模块用于数据仓库的建立以及数据的筛选操作;知识发现模块控制并管理知识发现过程,它将数据的输入和知识库中的信息用于驱动数据选择过程、知识发现引擎过程和发现的评价过程;人机交互模块通过自然语言处理和语义查询在用户和系统之间提供相互联系的集成界面。数据挖掘工具用于完成实际决策问题所需的各种查询检索工具、多维数据的联机分析分析工具等,以实现决策支持系统的各种要求。数据挖掘主要提供了以下几种模式(一)分类模式根据数据的值从树根开始搜索,沿着数据满足的分支往上走,直到树叶确定类别。(二)回归模式回归模式与分类模式相似,区别在于分类模式的预测值是离散的,而回归模式的预测值是连续的。(三)时间序列模式根据数据随时间变化的趋势预测将来的值。只有充分考虑时间因素,利用现有数据随时间变化的一系列的值,才能更好地预测将来的值。(四)聚类模式把数据划分到不同的组,组之间的差别尽可能大,组内的差别尽可能小,进行聚类前并不知道将要划分成几个组和什么样的组。(五)关联模式利用数据项之间的关联规则。(刘)和概念描述和比较操作把具有共同性的数据做汇总操作,从而得到一个具有一般性的规则描述。在实际应用中,可以根据具体情况采用不同模式组合,达到最优化的数据挖掘方式。在用户使用该系统时,首先需要通过分析决策需求,描述和表示决策的问题,确定数据来源,即可建立数据仓库;其次针对所要发现的任务的所属类别,设计或选择上述有效的数据挖掘算法并加以实现,从平凡的历史数据中提出综合数据,独立存储为库文件,作为更高一层数据挖掘对象;同时测试以评价所发现的知识,对知识进行一致性、效用性处理。最后根据最终用户的要求,建立适用于决策支持的数据仓库的集成界面和应用程序,使用户能在决策支持中运用所发现的知识。对于该系统的执行,每个步骤包含了循环和反复,可以对发现的知识不断求精、深化,并使其易于理解。三、结论总之,数据挖掘技术可以使其应用者由原来通过定期的、固定的报表进行定性的分析而上升到实时的、动态的各种形式的图表进行定量的分析,从而可以敏感地发现市场的微小变化并迅速做出反应,为企业在激烈的市场竞争中立于不败之地提供了强有力的工具。参考文献1范明,孟小峰.anjiawei,etal.数据挖掘概念与技术M.北京机械工业出版社,20072李捷.基于数据仓库和数据挖掘的企业决策支持系统研究J.科技经济市场,2006,73范丽霞,张雪兰.利用数据仓库和数据挖掘实现电信决策支持系统J.计算机与现代化,2005,8

  • 标签:
  • 简介:结合数字化校园的数据源,给出了在数据仓库环境下构建的数字化校园体系结构图,阐述了数字化校园数据仓库逻辑模型的设计,并把数据挖掘算法应用到数字化校园中,为高校管理者提供了决策支持信息。关键词数据仓库;数据挖掘;数字化校园中图分类号TP274文献标识码A文章编号1007-9599(2010)04-0000-01DigitalCampusApplication&StudyagainstDataWarehouseandDataMiningTechnologyWangYanpin1g,WangXiaoting2,ChangXianfa2(1.HeyuanTechnologyCollege,Heyuan517000,China;2.KaifengUniversity,Kaifeng475004,China)AbstractCombinethedatasourceofthedigitalcampus,giveanarchitecturemapofdigitalcampuswhichisbasedondatawarehouseenvironment,focusonthedigitalcampusdatawarehouselogicalmodeldesign,Andthedataminingalgorithmapplytothedigitalcampus,providethedecisionsupportinformationforuniversityadministratorsKeywordsDatawarehouse;Datamining;Digitalcampus一、引言高校数字化校园数据主要存储在关系型数据库中,这些系统中,大量的数据和数据模型,都是反映历届学生的学习成绩和教师的教学任务以及教学计划。随着高校对决策信息需求的日益广泛、复杂和迫切,这些传统的数据库系统存在的问题也越来越明显。本文利用数据仓库和数据挖掘技术在数字化校园中应用进行了研究。二、数字化校园数据仓库体系结构设计在对数字化校园各个子系统进行深入调研和需求分析的基础上,针对数据仓库的三个基本功能,提出了一个集中式数据仓库(数字化校园数据仓库)、分布式数据库(各个部门数据库)等适合数字化校园的数据仓库体系结构,如图1所示。该系统由五个部分组成(一)数据源来源于操作性数据库,其主要是完成日常业务处理,其数据将成为数据仓库的数据源。(二)多数据源集成将来自于不同数据源(SQL、Oracle等)的数据通过数据转换服务进行导入。(三)中心数据仓库在已有业务系统的基础上,通过数据的抽取、转换、加载,建立数字化校园数据仓库。(四)OLAP分析服务器通过建立OLAP分析服务器,从数据仓库中提取数据,完成数据的统计和分析。(五)决策支持工具是面向用户的数据需求的前端服务,支持各种OLAP和DM操作。三、数字化校园数据仓库逻辑模型设计在学生等级事实维表中存储七个维表,通过这几个维表的主键,将事实表和维表连接在一起,形成星型模式用二维关系表示数据的多维概念建立星型模型后,通过维表的主键,对事实表和每一个维作连接操作,其模型如图2如示。四、数据挖掘算法在数字化校园中应用分析针对学生等级多维数据集,把平均成绩、借书次数、平均消费、学生等级、家庭出身既作为输入列又作为可预测列,分析处理后可得到如图3所示学生等级一层决策树模型。在学生等级表中,所有事例为4925,其中学生等级为C的事例最多,为1726例,可能性为35.04%;学生等级表现为A的有495例,可能性为10.05%;学生等级表现为B的有1478例,可能性为30.01%;学生等级表现为D的有983例,可能性为19.95%;还有学生等级表现为E的极差事例有243例,可能性为4.93%。在这一事例图中,我们可以看到PJCJ是决定XSDJ最重要的因素,在高校教育中,抓学生成绩才是教学的关键所在。五、结束语采用DW+DM框架结构的决策支持系统是一种比较理想和完善的架构,该系统功能齐全、性能稳定,能对数据进行快速和准确的分析,从而帮助高校管理者做出更好的决策,提高高校管理效率,对数字化校园的利用具有一定的实用性和参考价值。参考文献1ZhaoHuiTang,JamieMaclennan.数据挖掘原理与应用M.邝祝芳,焦贤龙,高升.北京清华大学出版社,200725-262木根.数据仓库技术与实现M.北京电子工业出版社,20023王艳萍,常贤发.基于数据仓库的数字化校园的设计J.电脑知识与技术,2009,124薛红,王敏.基于DW+OLAP+DM的超市销售决策支持系统J.计算机工程,2007,33145王成,李民赞.基于数据仓库和数据挖掘技术的温室决策支持系统J.农业工程学报,2008,11作者简介王艳萍(1982-),女,硕士研究生,河源职业技术学院教师,研究方向为计算机应用技术。

  • 标签:
  • 简介:基于XML的半结构化数据挖掘技术,探讨了如何对wcb上的信息进行更加有效的挖掘和整理。

  • 标签: XML 半结构化数据挖掘.
  • 简介:在互联网攻击技术不断“推陈出新”的今天,种种迹象表明CSRF攻击作为一种新兴的WEB攻击技术已经成极大的威胁了互联网安全,本文针对CSRF(CrossSiteRequestForgery)跨站请求伪造攻击进行了简单的解析,揭示了CSRF的攻击原理。并结合现实情况提出了有针对性的解决方案。CSRF攻击是一种新兴的攻击技术,现在很多站点及IPS供应商都不具备针对这类攻击的防御能力,掌握对此类攻击的对策,对提高互联网安全性意义重大。

  • 标签: CSRF 跨站请求伪造 COOKIES
  • 简介:随着全球信息化的飞速发展,我国建设的各种信息化系统已成为国家关键基础设施,其中许多业务要与国际接轨,诸如电信、电子商务、金融网络等.因此,网络信息安全已成为亟待解决的影响国家全局和长远利益的关键问题之一.所以,探讨我国网络信息安全现存问题及其发展对策具有很重要的现实意义.

  • 标签: 网络安全 信息安全 信息系统 网络保密 防火墙 入侵检测系统
  • 简介:针对电脑工作者使用电脑中在身心健康方面受到的负面影响,文中逐一阐述由于"长期坐姿不良致病的原因"、"灰场致病的原因"、"干眼症的致病原因"、"电脑躁狂症的致病原因"、"头部和皮肤疾病的致病原因",并且分别提出了相应的防范措施。

  • 标签: 电脑 致病原因 预防措施 眼睛 显示器
  • 简介:随着计算机技术水平的不断发展,软件的规模和复杂度也随之增加。软件开发从个人模式向团队模式转换,计算机软件项目管理模式也向软件工厂式管理发展。目前,软件项目管理还存在一些问题,如对软件项目管理认识程度不足,缺乏整体把握;管理思想和理念没有得到落实,风险管理不成熟;缺乏有效沟通等,需要我们不断从提高项目管理人员计划意识,优化人力资源配置;树立风险管理理念,强化项目管理培训力度;加强沟通,从整体上对软件项目管理进行把握等方面进行改善。软件项目管理有效开展离不开项目管理人员对现代软件工程管理的理论和方法有全面的理解和掌握。

  • 标签: 软件 项目管理 对策
  • 简介:Authorware是一款功能强大的多媒体制作软件。它以流程线和设计图标为基本元素的设计结构及可视化的操作界面深受广大教师喜爱,成为目前教学中的主流多媒体开发软件。本人拥有多年的Authorware使用经验,现以Authorware7.0为例,把课件制作中容易出现的问题及解决方法形成文字,和大家共同探讨。以提高我们一线教师制作多媒体课件的技术水平。

  • 标签: AUTHORWARE 课件 打包 一键发布
  • 简介:摘要计算机信息网络的发展和普及,引发出一系列网络道德问题,计算机网络是把锐利的双仞剑,既为人类道德进步提供了难得的机遇,催动了人类道德发展的进程,也引发了严重的网络道德失范。本文作者从网络道德失范的表现入手,对网络失范问题产生的原因、网络道德失范的根源等问题,并提出解决这些问题的建议和对策

  • 标签: 网络道德 失范 对策思考
  • 简介:疫苗重大事件频发,引起社会各界对疫苗冷链运输的关注。本论文剖析疫苗流通存储现状,剖析国内外经验,提出完善相关设施设备实现疫苗可追溯性信息管理,针对性提出对策以及建议。

  • 标签: 疫苗流通 存储 流通 监管 信息可追溯