简介:为探寻能够区分矿山微震信号和爆破信号的波形特征,建立基于人工识别标准的事件数据库。人工识别的考虑因素包括:波形的重复特征、波形的衰减特征、信号的主频大小以及事件发生的具体时间。将数据库中的微震信号和爆破信号调整至同一坐标系下发现,两类事件的起振角趋。于集中在不同的区间。考虑到P波到时提取的不准确性,波形起振角难以准确计算,提出以应用线性回归拟合得到的起振趋势线斜率代替起振角。将首次峰值起振趋势线斜率和最大峰值起振趋势线斜率连同首次波峰及最大波峰的坐标列为特征参数,应用Fisher判别法,能成功实现微震事件与爆破时间的准确分离,识别正确率达到97.1%。
简介:Grouplet变换是通过Haar变换实现的一种二维图像多尺度分析技术,拥有根据图像的纹理结构自适应改变基的能力,从而具有较好的稀疏性。与小波变换相比,Grouplet变换在针对纹理复杂的金属断口图像的识别方面具有更优越的性能;将Grouplet变换与关联向量机结合,采用Grouplet熵作为特征,关联向量机作为识别器,提出了一种新的基于Grouplet熵-RVM的航空构件断口图像识别方法。试验表明:该方法结合了Grouplet变换以及关联向量机的优势,在针对222张断口图像的训练与识别中,识别率达到了85.58%,相比Grouplet熵-SVM方法识别速率提高了5倍。
简介:基于d-电子合金设计理论和JMatPro软件,运用正交试验,设计了具有较低弹性模量和较高强度且含有无毒元素Nb、Mo、Zr和Sn的新型生物医用∥钛合金Ti-35Nb-4Sn-6Mo-9Zr,并对该合金的显微组织和力学性能进行分析。结果表明,Ti-35Nb-4Sn-6Mo-9Zr合金在800。C下固溶处理后,由单一的β等轴晶构成。与Ti-6Al-4V相比,该合金具有较优越的力学性能:E=65GPa,σb=834MPa,σ0.2=802MPa,6=11%,有望成为新型种植材料。该方法可以有效地降低实验次数,并得到理想的实验结果。
简介:风电机组状态监测部位多,数据分析工作量大,人工故障识别的方式使得风电机组状态监测报告滞后.本研究提出一种基于幅值调制比率的风电机组齿轮箱失效自动识别方法,针对风电机组转速不平稳的特点首先对齿轮箱振动加速度信号进行时频分析得到机组的瞬时转速,然后进行阶比处理将等时间间隔信号序列重采样转换成等角度间隔信号序列,频域变换后选择一倍啮合频率和两倍啮合频率幅值较大值,计算调制间隔为转频的多频率点幅值累加和,再将与较大啮合频率处的幅值调制比率作为特征值表征齿轮箱的失效状态.恒速和变速风电机组齿轮箱振动数据分析结果都表明该特征值具有良好的故障与正常状态区分能力,且不同转速下该特征值具有稳定性.