学科分类
/ 1
6 个结果
  • 简介:在舰艇振动较大的部位加装隔振系统是提高其自身声隐身性能最有效、最常用的方法之一,而混沌隔振方法可以很好地提高舰船线谱的隔振能力.以双层隔振系统为对象,建立两自由度非线性隔振系统的动力学模型,研究系统振动传递率特性及刚度对隔振效果的影响,采用数值积分方法分析不同激励幅值f1下系统随频率甜变化的分岔规律及非线性动力学行为.结果表明,当f1=12.0时,双层混沌隔振系统在1.11~1.18倍频区域出现混沌运动,该特征可以有效地降低结构噪声中的线谱成分,其整体隔振性能良好,验证了基于混沌理论的线谱控制方法的有效性.

  • 标签: 双层隔振系统 振动传递率 分岔 混沌
  • 简介:研究了具有磁流变阻尼器悬架系统汽车的非线性动力学行为.汽车采用七自由度模型,磁流变阻尼器采用Sigmoid模型,路面激励为四轮有不同相位差的正弦激励.根据第二类Lagrange方程建立了汽车振动微分方程,采用四阶Runge—Kutta法进行数值仿真.以激励频率为参数分析汽车振动响应分岔过程,并通过时间历程图、相位图等分析了汽车在不同频率范围的振动特性,结果表明在特定的激励频率区间汽车发生混沌运动.分析结果可为基于磁流变阻尼器的车身振动控制提供理论指导.

  • 标签: 磁流变阻尼器 非线性振动 分岔 混沌
  • 简介:对旋转粘弹性夹层梁的非线性自由振动特性进行了分析.基于Kelvin—Voigt粘弹性本构关系和大挠度理论,建立了旋转粘弹性夹层梁的非线性自由振动方程,并使用Galerkin法将偏微分形式振动方程化为常微分振动方程.采用多重尺度法对非线性常微分振动方程进行求解,通过小参数同次幂系数相等获得微分方程组,并通过求解方程组及消除久期项来获得旋转粘弹性夹层梁非线性自由振动的一次近似解.用数值方法讨论了粘弹性夹层厚度、转速和轮毂半径对梁固有频率的影响.结果表明:固有频率随转速增大而增大,随夹层厚度增大而减小,随轮毂半径的增大而增大.

  • 标签: 旋转粘弹性夹层梁 Kelvin—Voigt 非线性振动 多重尺度法 近似解 固有频率
  • 简介:考虑了剪滞翘曲应力自平衡条件、剪切变形和剪力滞后效应等因素的影响,本文提出了一种对宽翼薄壁T形梁动力学特性的分析方法.分析中为了准确反应T形梁翼板的动位移变化,三个广义动位移被引入,且以能量变分原理为基础建立了T形梁动力反应的控制微分方程和自然边界条件,据此对T形梁的动力反应特性进行了分析,揭示了T形梁桥动力反应的规律.算例中,对比了考虑和不考虑剪滞翘曲应力自平衡条件对T形梁动力反应的影响,结果显示考虑剪滞翘曲应力自平衡条件的计算方法与有限元数值解吻合更好.

  • 标签: T形梁 剪力滞后 自平衡条件 动力反应 能量变分原理
  • 简介:在高参数汽轮机组和航空发动机等旋转机械中,转子-密封中的气流激振力对转子非线性动力学特性的影响不容忽视.本研究中建立了转子-密封系统三维流场模型,应用计算流体动力学(CFD)软件对可压缩气流流场进行模拟计算,获得了密封流场特性.由流场计算结果进一步获得了Muszynska气流激振力模型中的相关经验系数,使得此模型更加适用于气流激振力的计算.在对转子一密封系统进行非线性动力学分析过程中应用幂级数展开形式建立了系统幂级数模型.利用平均法得到气流激振力的1:2亚谐共振分岔方程,进一步应用奇异性理论和Hopf分岔理论研究了系统1:2亚谐共振的转迁集和系统超临界Hopf分岔与亚临界Hopf分岔的存在条件.通过参数控制方法抑制了转子-密封系统出现亚临界分岔的出现,使得系统稳定性提高.本文的分析结果对工程设计和操作具有一定的指导作用和意义.

  • 标签: 转子动力学 气流激振力 亚谐共振 奇异性理论 HOPF分岔
  • 简介:采用Timoshenko梁修正理论研究了有梯度界面层双材料梁的振动问题,利用静力方程确定了有梯度界面层双材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了有梯度界面层双材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.讨论分析了梯度界面层高度等因素对有梯度界面层双材料梁的振动影响,并用有限元法验证了Timoshenko梁修正理论.通过实例计算,得到了梯度界面层高度等因素对有梯度界面层双材料梁振动特性有较大影响的结论.

  • 标签: TIMOSHENKO梁 梯度界面层 中性轴 振动