学科分类
/ 1
7 个结果
  • 简介:对旋转粘弹性夹层的非线性自由振动特性进行了分析.基于Kelvin—Voigt粘弹性本构关系和大挠度理论,建立了旋转粘弹性夹层的非线性自由振动方程,并使用Galerkin法将偏微分形式振动方程化为常微分振动方程.采用多重尺度法对非线性常微分振动方程进行求解,通过小参数同次幂系数相等获得微分方程组,并通过求解方程组及消除久期项来获得旋转粘弹性夹层非线性自由振动的一次近似解.用数值方法讨论了粘弹性夹层厚度、转速和轮毂半径对固有频率的影响.结果表明:固有频率随转速增大而增大,随夹层厚度增大而减小,随轮毂半径的增大而增大.

  • 标签: 旋转粘弹性夹层梁 Kelvin—Voigt 非线性振动 多重尺度法 近似解 固有频率
  • 简介:综述了描述轴向运动横向非线性振动的两组数学模型的研究进展.在轴向运动径向和横向平面非线性振动耦合模型的基础上,总结了两组横向非线性振动模型的推导,以及在自由振动、受迫振动、参激振动工况下两组横向模型的近似解析比较的研究进展.在直接数值离散方法的基础上,总结了两组横向模型在各种工况下对平面耦合模型近似程度的研究进展.最后提出若干尚待深入研究的问题.

  • 标签: 轴向运动梁 振动 非线性模型 解析分析 数值仿真
  • 简介:基于Euler—Bernoulli理论、Hamilton原理以及Galerkin方法,建立了大变形悬臂夹芯在横向周期载荷作用下的二阶动力学方程;通过考虑外周期激励的不同频率与幅值,详细分析了材料阻尼比对泡沫铝夹芯的振动响应的影响.结果表明,泡沫夹芯结构具有较好的阻尼性能,可有效抑制的混沌振动.

  • 标签: 泡沫铝夹芯梁 动力学建模 阻尼 分岔 混沌
  • 简介:主要对含裂纹在振动与超声波联合激励下所出现的非线性动力响应的机理和特性进行研究.将疲劳裂纹在外加激励下的状态简化为周期性张开一『才】合的非线性过程,基于圣维南原理,采用有限元方法建屯了含非对称疲劳裂纹的非线性数值分析模型.利用非线性输出频率响应函数(NOFRFs)概念,对裂纹在高一低频简谐激励下所出现的非线性动力响应特性的机理进行了解释.具体以悬臂为例,仿真分析了裂纹深度和裂纹位置等参数的变化对系统非线性动力响应特性的影响规律.

  • 标签: 非线性特性 裂纹检测 多频激励 非线性输出频率响应函数
  • 简介:考虑了剪滞翘曲应力自平衡条件、剪切变形和剪力滞后效应等因素的影响,本文提出了一种对宽翼薄壁T形动力学特性的分析方法.分析中为了准确反应T形翼板的动位移变化,三个广义动位移被引入,且以能量变分原理为基础建立了T形动力反应的控制微分方程和自然边界条件,据此对T形的动力反应特性进行了分析,揭示了T形桥动力反应的规律.算例中,对比了考虑和不考虑剪滞翘曲应力自平衡条件对T形动力反应的影响,结果显示考虑剪滞翘曲应力自平衡条件的计算方法与有限元数值解吻合更好.

  • 标签: T形梁 剪力滞后 自平衡条件 动力反应 能量变分原理
  • 简介:采用Timoshenko修正理论研究了有梯度界面层双材料的振动问题,利用静力方程确定了有梯度界面层双材料的中性轴位置,在此基础上应用Timoshenko修正理论建立了有梯度界面层双材料的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.讨论分析了梯度界面层高度等因素对有梯度界面层双材料的振动影响,并用有限元法验证了Timoshenko修正理论.通过实例计算,得到了梯度界面层高度等因素对有梯度界面层双材料振动特性有较大影响的结论.

  • 标签: TIMOSHENKO梁 梯度界面层 中性轴 振动
  • 简介:用微分求积数值方法求解了轴向加速粘弹性的横向振动控制方程,其方程是一复杂的非线性偏微分方程.并在数值结果的基础上利用分叉图分析了轴向定常加速度以及轴向加速度变化幅值对轴向加速粘弹性的非线性动力学行为的影响.

  • 标签: 非线性偏微分方程 数值解 混沌 分叉 微分求积法