简介:Spatialapplicationswillgainhighcomplexityasthevolumeofspatialdataincreasesrapidly.Asuitabledataprocessingandcomputinginfrastructureforspatialapplicationsneedstobeestablished.Overthepastdecade,gridhasbecomeapowerfulcomputingenvironmentfordataintensiveandcomputingintensiveapplications.Integratinggridcomputingwithspatialdataprocessingtechnology,theauthorsdesignedaspatialdataprocessinggrid(calledSDPG)toaddresstherelatedproblems.RequirementsofspatialapplicationsareexaminedandthearchitectureofSDPGisdescribedinthispaper.KeytechnologiesforimplementingSDPGarediscussedwithemphasis.
简介:Withmassiveamountsofdatastoredindatabases,mininginformationandknowledgeindatabaseshasbecomeanimportantissueinrecentresearch.Researchersinmanydifferentfieldshaveshowngreatinterestindateminingandknowledgediscoveryindatabases.Severalemergingapplicationsininformationprovidingservices,suchasdatawarehousingandon-lineservicesovertheInternet,alsocallforvariousdataminingandknowledgediscoverytchniquestounderstandusedbehaviorbetter,toimprovetheserviceprovided,andtoincreasethebusinessopportunities.Inresponsetosuchademand,thisarticleistoprovideacomprehensivesurveyonthedataminingandknowledgediscorverytechniquesdevelopedrecently,andintroducesomerealapplicationsystemsaswell.Inconclusion,thisarticlealsolistssomeproblemsandchallengesforfurtherresearch.
简介:Thisresearchtakestheviewthatthemodellingoftemporaldataisafundamentalsteptowardsthesolutionofcapturingsemanticsoftime.Theproblemsinherentinthemodellingoftimearenotuniquetodatabaseprocessing.Therepresentationoftemporalknowledgeandtemporalreasoningarisesinawiderangeofotherdisciplines.Inthispaperanaccountisgivenofatechniqueformodellingthesemanticsoftemporaldataanditsassociatednormalizationmethod.ItdiscussesthetechniquesofprocessingtemporaldatabyemployingaTimeSequence(TS)datamodel.Itshowsanumberofdifferentstrategieswhichareusedtoclassifydifferentdatapropertiesoftemporaldata,anditgoesontodevelopthemodeloftemporaldataandaddressesissuesoftemporaldataapplicationdesignbyintroducingtheconceptoftemporaldatanormalisation.
简介:Page-basedsoftwareDSMsystemssufferfromfalsesharingcausedbythelargesharinggranularity,andonlysupportone-dimensionBlockorCyclicblockdatadistributionschemes,Thusapplicationsrunningonthemwillsufferfrompoordatalocalityandwillbeabletoexploitparallelismonlywhenusingalargenumberofprocessors,Inthispaper.awaytowardssupportingflexibledatadistribution(FDD)onsoftwareDSMsystemispresented.Smallgranularity-tunableblocks,thesizeofwhichcanbesetbycompilerorprogrammer,areusedtooverlaptheworkingdatasetsdistributedamongprocessors.TheFDDwasimplmentedonasoftwareDSMsystemcalledJIAJIA.ComparedwithBlock/Cyclic-blockdistributionschemesusedbymostDSMsystemsnow,experimentsshowthattheproposedwayofflexibledatadistributionismoreeffective.Theperformanceoftheapplicationsusedintheexperimentsissignificantlyimproved.
简介:Thispaperpresentsanewefficientalgorithmforclusteringcategoricaldata,Squeezer,whichcanproducehighqualityclusteringresultsandatthesametimedeservegoodscalability.TheSqueezeralgorithmreadseachtupletinsequence,eitherassigningttoanexistingcluster(initiallynone),orcreatingtasanewcluster,whichisdeterminedbythesimilaritiesbetweentandclusters.Duetoitscharacteristics,theproposedalgorithmisextremelysuitableforclusteringdatastreams,wheregivenasequenceofpoints,theobjectiveistomaintainconsistentlygoodclusteringofthesequencesofar,usingasmallamountofmemoryandtime.OutlierscanalsobehandledefficientlyanddirectlyinSqueezer.Experimentalresultsonreal-lifeandsyntheticdatasetsverifythesuperiorityofSqueezer.
简介:Inthispaper,ARMiner,adataminingtoolbasedonassociationrules,isintroduced.Beginningwiththesystemarchitecture,thecharacteristicsandfunctionsaredis-cussedindetails,includingdatatransfer,concepthierarchygeneralization,miningruleswithnegativeitemsandthere-developmentofthesystem.Anexampleofthetool'sapplicationisalsoshown.Finally,someissuesforfutureresearcharepresented.
简介:AmajoroverheadinsoftwareDSM(DistributedSharedMemory)isthecostofremotememoryaccessesnecessitatedbytheprotocolaswellasinducedbyfalsesharing.ThispaperintroducesadynamicprefetchingmethodimplementedintheJIAJIAsoftwareDSMtoreducesystemoverheadcausedbyremoteaccesses.TheprefetchingmethodrecordstheinterleavingstringofINV(invalidation)andGETP(gettingaremotepage)operationsforeachcachedpageandanalyzestheperiodicityofthestringwhenapageisinvalidatedonalockorbarrier.AprefetchingrequestisissuedafterthelockorbarrieriftheperiodicityanalysisindicatesthatGETPwillbethenextoperationinthestring.Multipleprefetchingrequestsaremergedintothesamemessageiftheyaretothesamehost,Performanceevaluationwitheightwell-acceptedbenchmarksinaclusterofsixteenPowerPCworkstationsshowsthattheprefetchingschemecansignificantlyreducethepagefaultoverheadandasaresultachievesaperformanceincreaseof15%-20%inthreebenchmarksandaround8%-10%inanotherthree.Theaverageextratrafficcausedbyuselessprefetchesisonly7%-13%intheevaluation.
简介:Approximatequeryprocessinghasemergedasanapproachtodealingwiththehugedatavolumeandcomplexqueriesintheenvironmentofdatawarehouse.Inthispaper,wepresentanovelmethodthatprovidesapproximateanswerstoOLAPqueries.Ourmethodisbasedonbuildingacompressed(approximate)datacubebyaclusteringtechniqueandusingthiscompresseddatacubetoprovideanswerstoqueriesdirectly,soitimprovestheperformanceofthequeries.WealsoprovidethealgorithmoftheOLAPqueriesandtheconfidenceintervalsofqueryresults.AnextensiveexperimentalstudywiththeOLAPcouncilbenchmarkshowstheeffectivenessandscalabilityofourcluster-basedapproachcomparedtosampling.
简介:Thispaperdescribesanimmersivesystem,called3DIVE,forinteractivevolumedatavisualizationandexplorationinsidetheCAVEvirtualenvironment.Combininginteractivevolumerenderingandvirtualrealityprovidesanaturalimmersiveenvironmentforvolumetricdatavisualization.Moreadvanceddataexplorationoperations,suchasobjectleveldatamanipulation,simulationandanalysis,aresupportedin3DIVEbyseveralnewtechniques.Inparticular,volumeprimitivesandtextureregionsareusedfortherendering,manipulation,andcollisiondetectionofvolumetricobjects;andtheregion-basedrenderingpipelineisintegratedwith3Dimagefilterstoprovideanimage-basedmechanismforinteractivetransferfunctiondesign.ThesystemhasbeenrecentlyreleasedaspublicdomainsoftwareforCAVE/ImmersaDeskusers,andiscurrentlybeingactivelyusedbyvariousscientificandbiomedicalvisualizationprojects.
简介:Withseveralricegenomeprojectsapproachingcompletiongeneprediction/findingbycomputeralgorithmshasbecomeanurgenttask.Twotestsetswereconstructedbymappingthenewlypublished28,469full-lengthKOMEricecDNAtotheRGPBACclonesequencesofOryzasativassp.japonica:asingle-genesetof550sequencesandamulti-genesetof62sequenceswith271genes.Thesedatasetswereusedtoevaluatefiveabinitiogenepredictionprograms:RiceHMM,GlimmerR,GeneMark,FGENSHandBGF.Thepredictionswerecomparedonnucleotide,exonandwholegenestructurelevelsusingcommonlyacceptedmeasuresandseveralnewmeasures.Thetestresultsshowaprogressinperformanceinchronologicalorder.Atthesametimecomplementarityoftheprogramshintsonthepossibilityoffurtherimprovementandonthefeasibilityofreachingbetterperformancebycombiningseveralgene-finders.
简介:艾讯科技非常荣幸向大家介绍最新投放市场的工业平板电脑PANEL1150—675。配备有15.1″TFT高亮度电阻式触摸屏,可扩展2个ISA/PCI槽,8通道DIO连接。此款经典的工业平板电脑PANEL1150~675是一款功能齐备高成效的工业人机介面控制器。
简介:Thegeneralconceptofdatacompressionconsistsinremovingtheredundancyexistingindatatofindamorecompactrepresentation.Thispaperisconcernedwithanewmethodofcompressionusingthesecondgenerationwaveletsbasedontheliftingscheme,whichisasimplebutpowerfulwaveletconstructionmethod.Ithasbeenprovedbyitssuccessfulapplicationtoareal-timemonitoringsystemoflargehydraulicmachinesthatitisapromisingcompressionmethod.
简介:Adatastreamisamassiveunboundedsequenceofdataelementscontinuouslygeneratedatarapidrate.Duetothisreason,mostalgorithmsfordatastreamssacrificethecorrectnessoftheirresultsforfastprocessingtime.Theprocessingtimeisgreatlyinfluencedbytheamountofinformationthatshouldbemaintained.Thisissuebecomesmoreseriousinfindingfrequentitemsetsorfrequencycountingoveranonlinetransactionaldatastreamsincetherecanbealargenumberofitemsetstobemonitored.WehaveproposedamethodcalledtheestDecmethodforfindingfrequentitemsetsoveranonlinedatastream.Inordertoreducethenumberofmonitoreditemsetsinthismethod,monitoringthecountofanitemsetisdelayeduntilitssupportislargeenoughtobecomeafrequentitemsetinthenearfuture.Forthispurpose,thecountofanitemsetshouldbeestimated.Consequently,howtoestimatethecountofanitemsetisacriticalissueinminimizingmemoryusageaswellasprocessingtime.Inthispaper,theeffectsofvariouscountestimationmethodsforfindingfrequentitemsetsareanalyzedintermsofminingaccuracy,memoryusageandprocessingtime.
简介:Denovosequencingisoneofthemostpromisingproteomicstechniquesforidentificationofproteinposttranslationmodifications(PTMs)instudyingproteinregulationsandfunctions.WehavedevelopedacomputertoolPRIMEforidentificationofbandyionsintandemmassspectra,akeychallengingproblemindenovosequencing.PRIMEutilizesafeaturethationsofthesameanddifferenttypesfollowdifferentmass-differencedistributionstoseparatebfromyionscorrectly.Wehaveformulatedtheproblemasagraphpartitionproblem.Alinearinteger-programmingalgorithmhasbeenimplementedtosolvethegraphpartitionproblemrigorouslyandefficiently.TheperformanceofPRIMEhasbeendemonstratedonalargeamountofsimulatedtandemmassspectraderivedfromYeastgenomeanditspowerofdetectingPTMshasbeentestedon216simulatedphosphopeptides.
简介:Animprovedself-organizingfeaturemap(SOFM)neuralnetworkispresentedtogeneraterectangularandhexagonallatticwithnormalvectorattachedtoeachvertex.Aftertheneuralnetworkwastrained,thewholescattereddataweredividedintosub-regionswhereclassifiedcorewererepresentedbytheweightvectorsofneuronsattheoutputlayerofneuralnetwork.Theweightvectorsoftheneuronswereusedtoapproximatethedense3-Dscatteredpoints,sothedensescatteredpointscouldbereducedtoareasonablescale,whilethetopologicalfeatureofthewholescatteredpointswereremained.