简介:摘要更加准确的电力负荷预测可以为电网的安全稳定运行、实时进行电网负荷的调度提供了重要依据。特别是在经济方面,精确的电力负荷预测可以优化发、用电电网调度计划,合理调度和分配资源,从而起到使社会效益、经济效益最大化的作用。然而随着中国经济的飞速发展,对电力的需求不断增长,电力负荷本身受诸多因素以及政策影响比如日期、天气、气候、市场等其他因素,这些因素更大大加大了准确进行电力负荷预测的困难性。一直以来,人们一直都致力于提高电力负荷预测的准确性,人工神经网络算法具有泛化、学习能力强等优点,现在该算法已在电力负荷预测领域中得到了广泛应用,并且取得了良好的效果。近年来,人工神经网络领域取得重大突破,涌现出一个新的深度学习研究领域。
简介:摘要:随着信息技术的不断成熟与发展,为各行各业的发展都带来了众多的便利,与此同时,各行各业都在不断的进行在信息化建设,电力企业也不例外,也在积极的进行着智能电网的建设,以推动电力系统运行质量的不断提升,这是时代发展的必然要求。在电力系统的运行过程当中,每天都会产生大量的电力数据。在这样的发展背景之下,我们进入了电力大数据时代,这对电力负荷的预算也提出了更高的要求与标准。电力负荷的预算准确性与时效性不仅与电力系统运行的稳定与可靠有着直接的关系,而且直接关系着社会的正常用电。因此有效保障电力负荷短期预测的准确性与时效性至关重要。基于此,本文在概述电力大数据的特点,以及分析电力大数据下的短期电力负荷预测必要性的基础上对电力大数据下的短期电力负荷预测进行了深入的研究,以供参阅
简介:摘要:电力负荷预测与优化调度是电力工程中关键的技术之一。准确的负荷预测可以帮助电力系统合理规划和配置资源,优化调度可以提高电网运行的效率和稳定性。本文综述了电力工程中电力负荷预测与优化调度的研究现状和方法,分析了相关问题及其解决方案,并对未来的发展趋势进行了展望。
简介:摘要负荷预测数据是电力系统运行和规划的重要依据,精准的负荷预测对于提高电力系统实际运行的经济性和可靠性有着非常重要的意义。我国正在推进电力市场的体质改革,对于负荷预测的研究更显得尤为重要。因为对于负荷预测的系统对电力市场提供着重要的技术支持,为物资贸易管理系统以及决策制定支持系统提供数据支持,在电力市场进行运营的同时也让各种各样的负荷预测方法迸发出了新的活力。因此预测未来长期负荷变化比较可行的也是最有效的方法就是对电力负荷的历史纪录数据进行整理观察,然后针对实际情况和现有的资料查找适合实际情况的负荷预测方法。目前,电力系统长期负荷预测法主要有趋势外推法、时间序列法、回归分析法以及灰色预测法等,而其中灰色计算法对于历史数据要求少,并且对数据分布无特殊要求以及限制,具有运算简便和可检验的优点。故本文选取灰色预测法对长期电力负荷进行仿真运算,检验其对于长期负荷预测的作用。