简介:双犹豫的模糊集合(DHFS)是由二部分组成的模糊集合(FS)的新归纳(即,会员迟疑功能和非会员迟疑工作),它面对显示认识的度的几不同可能的价值是否必然或无常。它包含模糊集合(FS),intuitionistic模糊集合(IFS),和犹豫的模糊集合(HFS)以便它能在决策的过程更灵活地处理不明确的信息。在这份报纸,我们基于爱因斯坦t-conorm和t标准在双犹豫的模糊集合上建议一些新操作,学习他们的性质和关系然后给一些双犹豫的模糊聚集操作员,它能被看作一些存在的归纳在下面模糊,intuitionistic模糊、犹豫的模糊环境。最后,在双犹豫的模糊环境下面的一个决策算法基于建议聚集操作员被给,一个数字例子被用来表明方法的有效性。
简介:LetFbeafieldofcharacteristiczero.Wn=F[t(+1/2),t(+1/2),...,t(+1/n)]δ/δt1+...+F[t(+1/2),t(+1/2),...,t(+1/n)]δ/δtnistheWittalgebraoverF,Wn+=F[t1,t2...,tn]δ/δt+...+F[t1,t2...,tn]δ/δtnisLieshbalgebraofWn.ItiswellknownbothWnandWn+aresimpleinfinitedimensionalLiealgebra.InZhao'spaper,itwasconjecturedthatEnd(Wn^+)-{0}=Aut(Wn^+)anditwasprovedthatthevalidityofthisconjectureimpliesthevalidityofthewell-knownJacobianconjecture.Inthisshortnote,wechecktheconjectureaboveforn=1.WeshowEnd(W1^+)-{0}=Aut(W1^+).
简介:为避免演化算法在求解多峰函数优化问题时对冗余空间的过度搜索,提高差异演化算法的搜索效率,提出一种新的基于空间收缩的种群灭亡差异演化算法(DEESC),通过最优个体收缩可行空间,用均匀设计方法反复初始化种群,并且讨论了DEESC的主要参数敏感问题.