简介:文章通过对EFM(effectivefieldmodeling)模型进行简化,消除了原模型的非守恒性项和非双曲性特性项,发展了一种基于密度的气液两相流模拟方法:ρ-VOF方法.利用体积分数信息对控制单元内的自由界面进行重构,得到了控制单元内流体的空间分布,并采用AUSM^+-up格式获得考虑气液流体接触间断信息的对流通量.新方法可统一处理激波间断和接触间断的相互作用,保持自由界面的尖锐性,并且其计算量与自由界面的空间复杂度无关.最后,数值模拟了液体激波管气液激波管和气体激波跨二维液滴传播等问题,并与文献结果进行对比,验证了本方法在气液两相流模拟中的准确性.
简介:本文研究两类稳定性定理.对LaSalle不变原理做更加合理的改进.研究了Lyapunov直接法,得到了改进的比较原理,并加以证明,最后应用到实例中.
简介:由于设备会随着使用时间的增加和自身寿命增长引起的退化而逐渐磨损失效进而发生故障.因此对于生产企业来说,想要提高自身竞争力,就要在生产过程中合理地安排预防性维护以减少设备故障导致的计划外停机,防止生产计划和生产线的中断,从而才能获取更多收益.本文从生产企业的角度出发,提出单机生产系统的非等周期不完美预防性维护与生产的联合优化策略,综合考虑生产价值、生产成本、生产延迟成本及各类维护成本等,构建了总利润率模型,目标是使总利润率最大化.其中涉及到的三类维护方式为(1)完美维护——即更换;(2)小修维护——即使设备“恢复如旧”;(3)不完美预防性维护——即使设备状态恢复到介于“完全如新”与“恢复如旧”之间的某状态.最后本论文通过数字实例,验证了新策略模型在实际生产应用中的有效性.
简介:在离散时间场合和不存在交易成本假设下,提出了期权定价的平均自融资极小方差规避策略,得到了含有残差风险的两值看涨期权价格满足的偏微分方程和相应的两值期权定价公式。通过用数值分析来比较新的期权定价模型与经典的期权定价模型,发现投资者的风险偏好和标度对期权定价有重要影响。由此说明,考虑残差风险对两值期权定价研究具有重要的理论和实际意义。
简介:假设保险盈余服从跳跃扩散过程,保险资金投资标的包括无风险资产和风险资产两部分,其中股票价格过程服从CEV模型.本文研究了一种终值财富期望指数效用最大化的最优化比例再保险投资问题.利用随机控制理论技术,得到比例再保险投资过程的HJB方程,并从理论上推导出了最优投资策略和价值函数的显示表达式.
简介:文章给出了一种真正多维的HLLRiemann解算器.采用AUSM分裂将通量分解成为对流通量和压力通量,其中对流通量的计算采用迎风格式,压力通量的计算采用HLL格式,且将HLL格式的耗散项中的密度差用压力差代替,从而使得格式能够分辨接触间断.为了实现数值格式真正多维的特性,分别计算了网格界面中点和角点上的数值通量,并且采用Simpson公式加权组合中点和角点上的数值通量得到网格界面的数值通量.为了减少重构角点处状态时的模板宽度,计算中采用基于SDWLS梯度的线性重构获得2阶空间精度,而时间离散采用2阶保强稳Runge—Kutta方法.数值实验表明,相比于传统的一维HLL格式,文章的真正多维HLL格式具有能够分辨接触间断,以及更大的时间步长等优点.与其他能够分辨接触间断的格式(例如HLLC格式)不同,真正多维的HLL格式在计算二维问题时不会出现激波不稳定现象.
简介:文章详细讨论了两类非对称涡流动诱发的模型摇滚运动.第1类是针对旋成体机身组合体模型,其摇滚运动是由前体非对称涡流动诱发的,运功形态呈现不确定性,由模型头尖部的扰动触发形成.文章提出了快速旋转头尖部扰动的控制技术,以抑制该类模型的大攻角摇滚运动.第2类是针对非常规机身的组合体模型,其摇滚运动的主控流动是非常规机身和机翼的前缘分离涡流动,这些流动是由组合体模型的边界条件确定的,从而运动形态具有很好的确定性.所以,这类模型的自由摇滚运动必须通过改变边界条件来改变诱发摇滚运动的流动,以达到抑制模型自由摇滚运动的目的.最后,文章还讨论了这类运动是由非对称的机翼涡涡强主控的.
简介:针对传统基于g信息的粗对准的捷联惯导系统中,受传感器噪声的影响,存在效视运动无法提取和双向量共线的缺点,提出了一种基于改良Kalman滤波的参数辨识粗对准方法。该方法通过构建视在重力在初始载体系中的映射模型,利用改良Kalman滤波进行模型参数辨识,然后通过识别参数重新构建视在重力在初始载体系中的映射,解决了由于传感器噪声导致有效视运动无法正常提取的缺点。利用识别参数具有随估计次数增多得到优化的特点,构造初始时刻和最终时刻向量,避免双向量共线问题。利用改良Kalman滤波算法的自适应特点,优化参数识别精度与速度。转台实验表明,采用改良Kalman滤波方法航向对准精度为-0.0414°,标准差为0.041°,而传统RLS方法得到的航向精度为-0.0738°,标准差为0.128°。由此可知,本文提出的方法性能更优。