学科分类
/ 1
11 个结果
  • 简介:在分离一致空间上给出了算子半群{Vt}的吸引子的相关定义,讨论了算子半群的σ-极限集与轨道之间的关系,极小闭全局吸引子和极小闭全局B-吸引子的关系及其存在的充分条件.给出了在分离一致空间上集合的σ-极限集是吸引自身的非空不变极小紧集的充分条件.

  • 标签: 一致空间 算子半群 吸引子
  • 简介:本文的目的是研究如下非局部椭圆算子方程在Dirichlet边界条件下变号解的存在性{-Lku=f(x,u)inΩ,u=0,inR^n/Ω,其中Ω∈R^n(n≥2)是具有光滑边界的有界区域,非线性项f满足超线性以及次临界增长条件.利用变号临界点定理,证明了在更弱的条件下无穷多变号解的存在性.

  • 标签: 变号临界点 非局部椭圆算子 CERAMI条件
  • 简介:在Pythagorean模糊集和Hamacher集结算子基础上,研究了Pythagorean三角模糊语言环境下的Hamacher集成算子问题。首先给出了Pythagorean三角模糊语言的定义、运算规则、得分函数、精确函数;其次,介绍了一系列关于Pythagorean三角模糊语言Hamacher集结算子,比如Pythagorean三角模糊语言Hamacher加权平均算子(PTrFLHWA)、Pythagorean三角模糊语言Hamacher加权几何平均算子(PTrFLHWG)等,并研究其具有的性质;之后,提出了两种决策方法来解决Pythagorean三角模糊语言信息环境下的多属性群决策问题;最后,用示例验证所给方法的有效性。

  • 标签: Pythagorean三角模糊语言变量 多属性群决策 Hamacher算子 集成算子
  • 简介:在分离拓扑线性空间上讨论了K类算子半群与AK类算子半群{V_t}在具有有限的全局吸收集条件下极小闭全局吸引子M的存在性和在具有有界全局吸收集条件下极小闭全局B-吸引子M的存在性,并讨论了这两类全局吸引子与σ-极限集的关系和M的连通性.此外,还讨论了具有紧的全局B-吸收集条件下极小闭全局B-吸引子M的存在性以及它与σ-极限集的关系.

  • 标签: 拓扑线性空间 算子半群 吸引子
  • 简介:本文利用Hardy-Littlewood极大函数、光滑模和K-泛函之间的等价关系、N函数的凸性、算子矩量估计及Jensen不等式等工具,研究了由陈文忠定义的LupasBaskakov型算子在Orlicz空间内的逼近性质,给出并证明了该算子在Orlicz空间内逼近的强型逆定理.由于Orlicz空间比连续函数空间和L_p空间涵盖更广泛,其拓扑结构也比L_p空间复杂得多,所以本文的结果具有一定的拓展意义.

  • 标签: Lupas-Baskakov算子 ORLICZ空间 逼近 强逆不等式
  • 简介:目前初中物理教材对浮力产生原因的分析上只停留在理论分析,实验室也没有说明这-知识点的教具,本文介绍利用身边物品制作出《浮力产生分析仪》.

  • 标签: 浮力产生 自制教具 立方体 压强计
  • 简介:S^p(1≤p≤∞)空间为导数属于Hardy空间H^p的复平面单位圆盘D上所有解析函数组成的空间.令函数φ和φ是D上的解析函数且φ(D)D,则将算子W(φ,φ):f→φfoφ称为加权复合算子.文章给出了当1≤q≤p≤∞,φ∈S^∞时,加权复合算子W(φ,φ)从空间S^p到S^q上的有界性的充要条件.然后通过推广经典的Fejer-Riesz不等式证明了当1〈p≤∞时,S^p到圆盘代数A上的嵌入映射是紧的.

  • 标签: S^p空间 HARDY空间 加权复合算子 Fejer-Riesz不等式 嵌入映射
  • 简介:在分离拓扑线性空间上得出了具有有限全局吸收集的B-AH类算子半群全局吸引子的存在性以及它们与σ-极限集的关系.此外,还讨论了一类极小闭全局B-吸引子的连通性.

  • 标签: 拓扑线性空间 算子半群 吸引子 连通性
  • 简介:利用FLUKA程序模拟计算了高能质子束打靶产生仿真大气中子束流时,靶材料、靶结构及入射质子能量对中子能谱的影响。结果表明,选择重金属铅或钨作为散裂靶材,不仅中子产额较大,而且当质子能量大于3GeV且在引出方向与质子入射方向夹角为30°时,中子能谱更接近标准大气中子能谱。对中国散裂中子源(ChinaSpallationNeutronSource,CSNS)第1靶站产生的白光中子束流能谱计算表明,该能谱适于开展仿真大气中子在半导体存储器件中引起的软错误试验研究;同时,就能谱形状而言,未来CSNS第2靶站在引出方向与质子入射方向夹角为30°和15°的两条白光中子束线,更适合开展与大气中子束流相关的存储芯片和高集成电路的单粒子效应研究。

  • 标签: 仿真大气中子束流 中子单粒子效应 中子产生靶 中国散裂中子源
  • 简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.

  • 标签: /M/1重试排队模型 特征值 几何重数