简介:针对线性高斯系统的平滑问题,分析了RTS固定区间平滑与双滤波器固定区间平滑两种算法,提出了一种滤波存储数据更少的RTS平滑新算法.结合平面内的运动追踪问题,基于二维CWPA模型,仿真分析了卡尔曼滤波、RTS固定区间平滑以及双滤波器平滑算法的估计性能.仿真结果表明,两种固定区间平滑算法的估计效果等效,精度均优于卡尔曼滤波,对于实际问题中固定区间平滑算法的选用具有一定的参考价值.最后,结合双滤波器结构提出了一种基于双平滑器的舰载武器惯导传递对准精度评估方法,结果表明新方法相比于单一的平滑算法,可以获取更优的综合平滑性能,特别提升了水平姿态对准误差的平滑估计性能.
简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。
简介:针对自由漂浮状态下的空间机械臂系统,研究了基座姿态扰动最小的轨迹规划问题。首先通过正弦函数参数化机械臂各个关节,在机械臂关节角速度、角加速度以及基座姿态变化范围受限的约束条件下,定义了基座姿态扰动最小的目标函数,然后提出了基于混沌粒子群算法的轨迹优化策略,并给出了具体求解步骤。数值算例结果表明,在满足系统的约束条件下,机械臂关节变化平缓,不存在角速度突变的情况,并且比标准粒子群算法具有更快的收敛速度,在优化轨迹下进行运动仿真,结果表明终止时刻基座姿态扰动为1.3708°(三轴合成),而梯形规划的姿态扰动为8.5459°,优化后使得姿态的扰动减小84%,从而说明所提出的算法能够有效减小机械臂运动对基座姿态的扰动。