简介:通过对局部凸空间上凸函数可微性的讨论,首先建立了关于凸函数β可微性的特征定理;定义在局部凸空间E的非空开凸子集D上的每个连续凸函数f均在D的一个稠密的子集上β-可微(也称E具有β-LP性质)的充分必要条件为其对偶E“中的每个w~*紧凸子集均是自己w~*一β暴露点的w~* 闭凸包;然后进一步证明了E~*上的w~*一β扰动优化定理成立,即定义在E~*的每个有界w~*闭集A~*上的w 下半连续有下界的函数g以及每个ε >0均存在x0 A及x E满足使得(g+x)(x )=infA (g+x)且{xi } A ,(g+x)(xi )→infA (g+x)推出xi -xo ,当且仅当E具有β-LP性质.
简介:针对亚轨道可重复使用运载器(SRLV)的应用需求,在将卫星投送到预定轨道同时确保SRLV安全返回的前提下,对基于记忆原理的轨迹/总体参数一体化优化方法进行了研究。记忆优化算法是一种具有全局收敛性的随机搜索方法,每次搜索的试探解优劣状态由记忆元来存储。利用记忆原理的记忆增强和遗忘规律来衡量优化搜索过程中试探解的状态,并以燃料最省作为优化指标。同时采用三种不同的搜索策略,实现对试探解的随机搜索,避免陷入局部极小问题,并以此来提高搜索速度。仿真表明:卫星入轨速度偏差小于2m/s,高度偏差小于10m,轨道倾角偏差小于0.0001°。SRLV最终与着陆场的位置偏差小于100m,速度偏差小于5m/s。相较于传统的轨迹优化方法,新方法适用于复杂的轨迹/参数一体化优化问题,搜索速度快,求解精度高,有利于算法在工程实际中的应用与推广。
简介:设G是一个有限的简单连通图.D(G)表示V(G)的一个子集,它的每一个点至少有一个最大匹配不覆盖它.A(G)表示V(G)-D(G)的一个子集,它的每一个点至少和D(G)的一个点相邻.最后设C(G)=V(G)-A(G)-D(G).在这篇文章中,下面的被获得.(1)设u∈V(G).若n≥1和G是n-可扩的,则(a)C(G-u)=和A(G-u)∪{u}是一个独立集,(b)G的每个完美匹配包含D(G-u)的每个分支的一个几乎完美匹配,并且它匹配A(G-u)∪{u}的所有点与D(G-u)的不同分支的点.(2)若G是2-可扩的,则对于u∈V(G),A(G-u)∪{u}是G的一个最大障碍且G的最大障碍的个数是2或者是|V(G)|.(3)设X=Cay(Q,S),则对于u∈Q,(a)A(X-u)==C(G-u)和X-u是一个因子临界图,或者(b)C(X-u)=和X的两部是A(X-u)∪{u}和D(X-u)且|A(X-u)∪{u}|=|D(X-u)|.(4)设X=Cay(Q,S),则对于u∈Q,A(X-u)∪{u}是X的一个最大障碍且X的最大障碍的个数是2或者是|Q|.更多还原
简介:给出关于可列非齐次马尔可夫链M元状态序组出现频率的一个新形式的强极限定理及其推广,所得结论对任意可列非齐次马尔可夫链普遍成立.
简介:如果对一个简单图G的每一个与G的顶点数同奇偶的独立集I,都有G-I有完美匹配,则称G是独立集可削去的因子临界图.如果图G不是独立集可削去的因子临界图,而对任意两个不相邻的顶点x与y,G+xy是独立集可削去的因子临界图,则称G是极大非独立集可削去的因子临界图.本文刻画了极大非独立集可削去的因子临界图.
简介:首先用微分中值定理推出了Newton-Leibniz公式,同时也用Newton-Leibniz公式推出了三个微分中值定理,从而证明了微分中值定理与Newton-Leibniz公式可互相证明.