学科分类
/ 4
75 个结果
  • 简介:针对不确定多属性决策中的属性信息分布不均匀,且评价信息多数为二维信息的情况,本文提出了二维区间密度加权算子(TDIDW算子)的属性信息集结方法.依据密度算子的集结过程特点,文章首先定义了二维区间密度加权算子及其合成算子,然后介绍了基于灰色区间聚类法的评价信息分组方法以及基于非线性模型的密度加权向量确定方法,最后进行了算例验证.验证结果表明,该方法可以有效地解决由于属性信息分布不均匀而垦砖;平价结橐不准确曲泪靳

  • 标签: 多属性决策 二维区间密度加权算子 灰色区间聚类法 非线性模型
  • 简介:单位体积某种物质的质量叫做这种物质的密度,它是由某种物质组成的物体的质量与体积的比值,密度反映了物质的一种属性.仅仅了解这些文字,还不能说明你了解了密度.下面请跟我来吧.

  • 标签: 密度 物质组成 质量 体积 物体
  • 简介:介绍了密度矩阵的概念、Hilbert-Schmidt内积、由此内积诱导的范数,然后以矩阵及算子理论为基础,借助内积这一数学工具给出了二阶、四阶、八阶密度阵的表示,并对二阶、四阶、八阶密度阵表示进行了分析,得到了相关结论,最后将其结论推广到2~n阶密度阵.

  • 标签: 密度矩阵 内积 范数 正规正交基
  • 简介:求混合密度的题目常常让同学们一筹莫展,其实求混合密度可用通式:ρ=m总/V总.解题中往往是先假设m总或是假设V总,再列关系式计算出总密度.请同学们从下面的三道中考题中领悟求解混合密度的秘诀.

  • 标签: 混合密度 通式 求解
  • 简介:以广义逆为工具运用算子演算给出加权移位算子是次正常算子的条件,所用方法不同于Stampfli的工作,但结果一致.作为应用给出了两个例子.

  • 标签: 移位算子 次正常算子 亚正常算子 M-P广义逆
  • 简介:对[0,2π]年的区间I,对它的左右两个半区间L,R,定义一种加权原子形如b(t)=1/(p(t))[X1-XR(t)],其中ρ为满足某些性质的非负函数,加权原子b(t)的线性组合构成加权原子空间B(ρ),本文证明了如果f∈B(ρ),则f的Fourier级数的Cesaro平均几乎处处收敛。

  • 标签: CESARO算子 FOURIER级数 加权原子空间 Dirichlet核
  • 简介:密度反映的是物体在一定状态下单位体积物体所含物质的多少.它是物质的一种本质特征.在一定状态下,物质的密度是固定不变的,密度可以由公式ρ=m/V计算得出.因为体积增大必然会导致质量增大,所以不可以认为密度与质量成正比或密度与体积成反比.如:一滴酒精的质量和体积都很小,但它的密度与一杯酒精的密度是一样的,都是0.8×10^3k/m^3.

  • 标签: 密度 体积 物质 质量 状态 物体
  • 简介:分析了Г分布密度函数的性质,指出了该密度函数与相应参数之间的关系.主要研究第二个参数对密度的影响,证明了β增大时Г(α,β)分布密度极大值也增大,还指出了β变化时Г(α,β)分布密度与另一特定密度曲线交点的变化规律.

  • 标签: Г分布 密度函数 Г函数
  • 简介:在不等精度测量传感器的测量数据处理中,选择合理的权重对处理结果的影响十分明显。本文对目前的靶场数据处理中采用的两种加权方法进行了分析,提出了一种新的精度加权方法。通过对各种加权方法的特点及合理的比较,给出了各种加权方法的使用条件和原则。

  • 标签: 传感器 数据处理 精度 不等精度测量 数据处理
  • 简介:在本文中,给定一组有序空间数据点列及每个数据点的切矢向量,利用加权二次有理Bézier曲线对数据点作插值曲线,使该曲线具有C^2连续性,并且权因子只是对相应顶点曲线附近产生影响,同调整两个相邻的权因子可以调整这两个相邻顶点之间的曲线和它的控制多边形.

  • 标签: 二次有理曲线 权因子 插值曲线 有理BÉZIER曲线 加权 控制多边形
  • 简介:本文利用一种积分平均函数给出了加权Dirichlet空间Dα。(α>-1)上的复合算子Cψ为Schattenp-类算子的充要条件.此结果包含了过去已有的关于Hardy空间及加权Bergman空间Aα(α>-1)上的复合算子的已有结论.主要定理是:设p>0,α>一1,ψεDa,则Cψ为Dα上的Schatten p-类算子的充要条件是存在δ>0,使得积分平均函数Φδ(z)=λ(D(z,δ))=1 integral form n=D(z,δ)τψ,α(ω)d-λ(ω)属于L2p(dv),其中D(z,δ)为伪双曲圆盘,τψ,α为Cψ关于Dα的确定函数;dv(z)=(1-|z|2)-2dλ(z),dλ为D上的就范面积测度.

  • 标签: 加权DIRICHLET空间 复合算子 紧算子 Schatten类算子