简介:利用随机不动点指数理论及Banach常微分方程理论的随机结果,证明了关于随机弱内向映射一个随机三解定理.
简介:第一类弱奇异核Fredholm积分方程由于奇异及本质的不适定性,给求解带来很大难度.本文首先利用克雷斯变换将方程转化,并对转化后的方程进行高斯一勒让德离散,得到一离散不适定的线性方程组,结合正则化方法对该类问题进行数值求解.最后给出了数值模拟,验证了本文方法的可行性及有效性.
简介:本文中,我们将一些作者的相关结论推广到加权空间,并且获得了由Bochner-Riesz算子生成的极大交换子在加权Herz-Hardy空间和加权Hardy空间的有界性,其中ω∈A_1.
简介:通过对可预报向量值弱Hardy-Orlicz鞅空间wPB^Φ建立弱原子鞅分解,并借助广义的Davis鞅分解定理,证明了有限鞅在向量值弱Hardy-Orlicz鞅空间wHB^Φ中稠密的充分必要条件是Banach空间B具有Radon-Nikodym性质,所得结果推广了已有文献中的相应结论.