简介:证明了有限时滞系统解的毕竟有界性蕴含周期解的存在性,把常微分方程的相应结果推广到了泛函数微分方程。
简介:在非负定矩阵的偏序意义下讨论了对Cauchy-Schwarz不等式的推广,将随机变量情形下的Cauchy-Schwarz不等式推广到随机向量情形,而且两个随机向量的维数不要求相等,一个是随机变量另一个是随机向量是其中的一个特殊情形,另外还研究了有限维空间中的向量情形的Cauchy-Schwarz不等式在矩阵情形下的推广,得到一个十分简明的结果,并将此结果用于讨论一类随机向量簇的协方差阵的下界,不仅得到下界的具体表达式,而且给出能达到该下界的充分必要条件.
简介:对Bernstein-Fan算子进行推广,并在此基础上进一步探讨其一致收敛性以及导数与连续模之间的关系。
简介:研究完备度量空间中一类拟均衡问题的可解性,由此导出著名的Ekeland变分原理。
简介:随着时代的发展,社会的进步,人们把关注的目光放到早期科学育儿的领域。幼儿珠心算教育于是应运而生。它所以被上海幼教界所接受并有普及之势,是基于对现代计算进步所付出的代价以后所进行的理性反思,以及脑科学理论的兴起对人们的及时启迪。随着人工智能日益广泛的应用,社会逐步改变劳动在社会中的地位。人工计算包括传统的珠算逐渐被电脑、计算器的计算所代替,久而久之,人脑的计算潜能也被现代化设备所埋没,更有甚者在日常生活中购买物品时离开了计算器竟连简单的加减乘除也不行,人脑的退化到了令人叹为观止的地步。于是,一些有识之士强烈地呼吁要保留并发扬传统的珠算教育这一国粹,让闲置的脑力恢复它应有的功能并创造出惊人的业绩。珠算是我国发明的,明代已流传到日本,现已几乎遍及东南亚、发展到美洲、澳洲和部分欧洲地区。各国何以如此热心引进珠算?其要旨是运用珠算的教育功能,提高学生的心算(珠心算)能力,并在提高计算能力的过程中,以此为抓手,促进学生动脑、动手、培养注意力、意志力,开发学生的智慧的潜能。使得发展智力与智力因素,相辅相成地同步进行。认识到了珠算的特殊功能,上海珠算协会便成了热心于此项事业的塑星...
简介:本文将一个关于两个不交国的单点粘合的图的LPlaCe谱的受控定理推广到了两个国的多点粘合何形;同时证明了相同的结果对目的Q一回也成立。