学科分类
/ 9
162 个结果
  • 简介:一个单圈图G的邻接矩阵是奇异的当且仅当G含完美匹配和4m(m∈N)阶圈,或G和从G中删去唯一圈中的顶点及其关联边后得到的导出子图均不含完美匹配.单圈图的邻接矩阵最大行列式是4.

  • 标签: 单圈图 邻接矩阵 完美匹配 最大行列式 特征多项式
  • 简介:将文[1,4]中定义广义正定矩阵的概念再作推广,并讨论各种不同定义下的广义正定矩阵间的包含关系,给出M-矩阵等价的四种新定义.

  • 标签: 广义正定矩阵 M-矩阵 等价性
  • 简介:在本文中,我们证明了对一个反Krylov矩阵作QR分解后,利用得到的正交矩阵可以将一个具有互异特征值的对称矩阵转化为一个半可分矩阵的形式,这个结果表明了反Krylov矩阵与半可分矩阵之间的联系.另外,我们还证明了这类对称半可分矩阵在QR达代下矩阵结构保持不变性.

  • 标签: 反Krylov矩阵 半可分矩阵 特征值 QR分解
  • 简介:Inthispaper,theconceptofthes-doublydiagonallydominantmatricesisintroducedandthepropertiesofthesematricesarediscussed.Withthepropertiesofthes-doublydiagonallydominantmatricesandthepropertiesofcomparisonmatrices,someequivalentconditionsforH-matricesarepresented.TheseconditionsgeneralizeandimproveexistingresultsabouttheequivalentconditionsforH-matrices.Applicationsandexamplesusingthesenewequivalentconditionsarealsopresented,andanewinclusionregionofk-multipleeigenvaluesofmatricesisobtained.

  • 标签: H-矩阵 S-双对角占优矩阵 余角 高斯变换
  • 简介:介绍了密度矩阵的概念、Hilbert-Schmidt内积、由此内积诱导的范数,然后以矩阵及算子理论为基础,借助内积这一数学工具给出了二阶、四阶、八阶密度阵的表示,并对二阶、四阶、八阶密度阵表示进行了分析,得到了相关结论,最后将其结论推广到2~n阶密度阵.

  • 标签: 密度矩阵 内积 范数 正规正交基
  • 简介:利用构造性的方法证明了实方阵空间上的相容矩阵范数均可延拓到复方阵空间上。

  • 标签: 矩阵范数 谱半径 范数延拓
  • 简介:网页等级(PageRank)是一个反映网页重要性的数值.当一个网页A连向另一个网页B的时候,A就等于给网页B投了有效的一票.一个网页接受的票越多,这个网页就越重要.同时,给网页B投票的网页本身的等级也决定了该选票的重要性.Google通过每张选票本身重要性和得票多少来计算一个网页的级别(重要性).Google的核心就是计算每一个网页的等级(即PageRank).本文主要介绍Google矩阵的定义和产生,解释PageRank的一些相关概念,证明Google矩阵及其第二特征值具有的一些性质,并简要介绍这些性质的应用.

  • 标签: 网页分级Google矩阵 搜索引擎 链接 特征值
  • 简介:定义了上三角等次对角线矩阵和上三角交错次对角线矩阵,讨论了矩阵方程AX-XA=0的对称解与AX+XA=0的反对称解.在此基础上考虑了以下问题的可解性:给定A∈R^n×m,D∈R^m×m,分别求X,Y∈SR^n×m和X,Y∈ASR^m×m,使得XA=YDA.

  • 标签: 对称矩阵 反对称矩阵 广义特征值 反问题
  • 简介:本文研究了实子矩阵约束下矩阵方程AX:B及其最佳逼近的共轭梯度迭代解法.首先运用矩阵分块将原方程AX=B转换为2个低阶方程,利用共轭梯度的思想构造迭代算法;然后证明了算法的有限步终止性;最后给出数值实例验证算法的有效性.

  • 标签: 子矩阵约束 共轭梯度迭代法 有限步终止性 最佳逼近
  • 简介:得到一个矩阵A与其特征多项式的友矩阵C相似的充要条件是对应于A的每个不同的特征值λi,Jordan标准形中只含有一个Jordan子矩阵,并给出证明.

  • 标签: 矩阵 友矩阵 相似矩阵
  • 简介:本文的主要目的是考虑强Morphic环D上的矩阵尾环R[D]的Morphic性质。本文讨论了类似尾环的一些性质。证明了:R[D]是强左Morphic环当且仅当R[D]是左Morphic环当且仅当D是强左Morphic环。本文还构造了一些例子来说明问题。

  • 标签: 矩阵尾环 左Morphic环 正则性
  • 简介:设A、B、C分别为n×n,m×m,n×m复数矩阵,本文得到缺项矩阵(?CC^*B)\(?CC^*?)\(A??B)及(???B)存在投影补的充分必要条件,并且给出这些投影补的完全刻画。

  • 标签: 矩阵 投影 充分必要条件 缺项 刻画 复数