简介:给出了广义酉矩阵和广义Hermite矩阵的定义。对给定矩阵A,B,得到了不相容矩阵方程AX=B的广义Hermite最小二乘解的通解表达式,并在其解集中,对给定矩阵的最佳逼近问题进行了研究。
简介:本文利用四元数矩阵的广义Frobenius范数建立一个关于四元数矩阵的实函数,并讨论了它的极值问题.然后在四元数矩阵方程AX-YB=C的解集合中导出了与给定矩阵的最佳逼近解的表达式.
简介:本文首先利用共轭梯度及矩阵性质,构造迭代算法,并证明算法的收敛性,同时对该算法当方程相容时收敛到问题的极小范数解进行证明.然后,对该算法进行细微修改,应用于相应的最佳逼近问题.最后给出相关的数值实例,验证算法的有效性.
简介:本文中,我们讨论了矩阵方程AXB=D的最小二乘Hermite解,通过运用广义奇异值分解(GSVD),获得了解的通式。此外,对于给定矩阵F,也得到了它的加权最佳逼近表达式。
简介:本文讨论矩阵方程ATX+xTA=C的一般解及其最佳逼近解的正交投影迭代解法.首先,利用矩阵的结构特点及相关性质,并借助矩阵空间的相关理论,给出求该矩阵方程一般解正交投影迭代算法;其次,根据奇异值分解、F-范数正交变换不变性证明算法的收敛性并推导出算法的收敛速率估计式,当方程相容时,该算法收敛于问题的极小范数解,且对该算法稍加修改,就可得到相应最佳逼近解;最后,用数值实例验证算法的有效性.