学科分类
/ 1
13 个结果
  • 简介:<正>一、中考对函数、一次函数、反比例函数知识点的考查内容及要求(1)能从具体问题中寻找数量关系和变化规律.(2)了解常量、变量的意义,了解函数的概念和三种表示方法,能举出函数的实际例子.(3)能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值.(4)理解平面直角坐标系的有关概念,知道各象限及坐标轴上的点的坐标特征;会求某点关于x轴或y

  • 标签: 比例函数 专题复习 平面直角坐标系 变量取值 考查内容 二次根式
  • 简介:本文首先定义了内积函数,这个概念推广了内积的定义.然后定义了Hilbert空间(H,〈·,·〉)上由严格正算子A诱导的范数,这个范数与由〈·,·〉诱导的范数是等价的.进一步,证明了所有的内积函数与线性有界的严格正算子全体之间存在一一对应关系.

  • 标签: Frechet-Riesz定理 严格正算子 内积函数
  • 简介:研究了在单位开圆盘内单叶解析且规范化的复系数函数族gφ1,φ2,φ3,φ4(m1,m2,m3,m4;λ)的一些性质,给出了其子族gφ1,φ2,φ3,φ4(m1,m2,m3,m4;λ)在内闭一致收敛拓扑下的极值点和支撑点,并讨论解决了gφ1,φ2,φ3,φ4(m1,m2,m3,m4;λ)与凸函数相关的一些半径问题,推广了近来的一些研究结果.

  • 标签: 解析函数 凸函数 内闭一致收敛拓扑 线性泛函 支撑点
  • 简介:在微积分学中,极限是一个非常基础而重要的概念,是研究函数的一个基本工具.但较抽象,尤其多元函数的情形.目前,在有关微积分的教材中,一元函数极限的概念相对标准且统一,但多元情形较乱,甚至自相矛盾.本文试图就此问题进行研究,并以一元函数极限的概念为标准,给出多元情形一个标准定义.

  • 标签: 函数 极限 侧极限
  • 简介:本文对开集D加上适当的条件,对Orlicz-Sobolev空间的性质进行了深入的研究,Orlicz-Sobolev函数可用在开集外为零的Lipschitz连续函数来逼近,将结果以Hardy型不等式的形式表示,对解决偏微分方程问题起了很重要的作用.

  • 标签: 零边界值 Lipschitz连续函数 HARDY型不等式
  • 简介:设m为正整数,n=2m,p为一奇素数,令d=pm+1/2,elm,其中a∈Fpn,γ是Fpn中的一非平方元.本文研究了有限域Fpn上的函数F(x)=Tr1(axpm+e+1-γdxpm+1),利用有限域上的二次型理论,证明了在role为奇数的条件下或role为偶数但a(pn-1)/pe+1)≠1的条件下,F(x)为P元弱正则Bent函数

  • 标签: p元Bent函数 WALSH变换 二次型 有限域
  • 简介:著名数学家和数学史家克莱因(M.Kline)认为“每一位中学和大学数学教师都应该知道数学史,数学史是教学的指南.”荷兰数学家和数学教育家弗赖登塔尔也认为“数学史应该是数学教师用于数学教学的必备知识”,他曾批评那种过于注重逻辑严密性、没有丝毫历史感的教材乃是“把火热的发明变成了冰冷的美丽”.可见,数学史与数学教育的整合是历史的必然.无论是从数学史的功能、数学史的教育价值还是从数学史的审美观念等层面来看,把数学史当成数学知识教学的一部分都是应该的.但现行的教材却没有有效地利用数学史的这一特点来辅助教学.比如,对于三角函数这一重要知识点的教学,现行的教材只是“蜻蜓点水”般地介绍了相关数学史知识.鉴于此,本文以三角函数的发展史为出发点,探索数学史与数学教育的有机整合.

  • 标签: 数学教育家 数学史家 三角函数 有机整合 数学教学 数学教师
  • 简介:设a(z)是一个没有零点的整函数,k≥3是个整数,F是区域D上的亚纯函数族,对每一个f∈F至少有k重零点和2重极点.若对每一对f,g∈F有ff(k)与gg(k)IM分担a(z),则F在区域D内正规.

  • 标签: 亚纯函数 正规族 分担函数
  • 简介:<正>函数是中学数学的核心内容,是贯穿整个中学数学的一条主线,它似一根纽带,把数学的各个分支紧紧地联系在一起.一次函数、反比例函数、二次函数是初中阶段函数学习的重点内容,但在近几年的中考试题中,分段函数图象应用题的身影屡见不鲜,而大多数学生一见到这类题就懵,看不懂图象是什么意思,不知从何处入手,造成了丢分.因此,解答分段函数图象应用

  • 标签: 中考试题 中学数学 分段函数 比例函数 二次函数 救援船
  • 简介:生活离不开数学,利用数学知识可巧妙解决生活中的许多实际问题,反过来把数学练习与学生的生活经验结合起来,既能让学生对所涉及的数学知识有一个更深刻的认识,又能体现出数学的应用价值.用一次函数解决问题是学生理论联系实际,让学生学以致用的一个重要平台.前不久讲评一次函数的应用时学生分别在书中、评讲和补充习题上发现了一类问题的解答与生活经验不符,接下来展示学生如何找出问题以及修改的教学片段.

  • 标签: 数学知识 生活化 函数解 实录 课堂 生活经验
  • 简介:思维是在表象、概念的基础上进行分析、综合、推理等一系列认知活动的过程,是一种隐性的心理活动,而操作则是隐性心理活动的一种显性表现.学生的数学思维,往往与他们操作时的活动过程分不开,缺少思维的活动是空虚的.在课堂教学中突出学生的操作过程,不仅可以调动学生的学习兴趣,而且可以有效地发展学生的数学思维.2013年11月,常州市高中数学陈小红名师工作室与苏州市相城区蒋智东名师工作室开展了一次联合教研活动.

  • 标签: 操作过程 数学思维 示范课 图象 函数 心理活动
  • 简介:<正>纵观近几年来各省中考题,对于锐角三角函数的概念,直角三角形中的边角关系,简单的解直角三角形等知识点的考查多以填空题和选择题的形式出现,而运用解直角三角的知识解决实际问题,则成为近年来中考的热点.

  • 标签: 专题复习 填空题 数形结合思想 兴趣小组 辅助线 省中