简介:文[1]介绍了立阵式并讨论了立阵式的性质,文[2]介绍了立阵式的Laplace定理,本文在文此基础上,讨论了两个立阵式的对应元素之和的立阵式,并建立了它与牛顿二项式定理中,项之间的对应联系和计算形式。
简介:本文研究二阶中立型时滞差分方程△^2(xn-cnxn-m)=pnxn-k,n≥no(*)的振动性与非振动性.其中,Cn,pn均为实效,pn≥0,pn≠0,n≥n0,m,k,n0是给定的非负整数,且m≥1,△为向前差分算子,△xn=xn+1-xn,我们证明了t若Cn≥0,则方程(*)总存在一个无界正解,也给出(*)的一切有界解振动的若干充分条件及充分必要条件.
简介:本文建立了具有正负系数的一阶中立型时滞微分方程的一个新的振动定理,它推广了文献中的若干结果.
简介:研究具多个滞量(t≥3)的一阶中立型微分方程d/dt[x(t)+px(t-r)]+^n∑(i=1)qix(t-si)=0(1)其中p,r,sn>s(n-1)>…>s1,qi(i-1,1…,n)都是正常数,得到方程(1)振动的一个充要条件和一个充分条件,这些条件带有若干个可调参数,当参数取定不同的值时,可得出不同的充要条件和充分条件,我们的结果包含或改进了文献[2,3,8,10]等的一些相应结果。
简介:3月16日下午3时,国务委员、前浙江省委书记王芳同志,由浙江省台州市委副书记陈宝新和临海市委书记苏建国、市长蔡学武等同志陪同下莅临国华珠算博物馆视察,观赏了“四最”算盘的特色和展
两个立阵式对应元素之和的立阵式
具有变系数的二阶中立型时滞差分方程
具有正负系数的一阶中立型时滞微分方程的振动性
带有多个滞量的一阶中立型微分方程振动的充要条件
国务委员王芳视察国华珠算博物馆