简介:讲座了超导中连续Josephson结系统解的渐近行为,利用先验估计证明了当时间趋于无穷时解收敛于对应稳态问题的解。
简介:研究了非多项式增长的变分泛函,利用Orlicz空间理论,得到了其在Orlicz-Sobolev空间中弱序列下半连续的充要条件,推广了关于多项式增长的变分泛函的相应结论。
简介:探讨多连通域的Bergman空间上的具有分段连续符号的Toeplitz算子,刻画了它们的本质谱和Fredholm指标.
简介:本文主要是研究连续变量遗传系统Volterra方程的第二型,即x(t+h0)=η(t+h0)+F(t,(x(t),x(t—ht)…,x(t-h0)的p-均值可积性.同时举例说明了此方程的Lyapunov泛函的构造,以及利用Lyapunov泛函证明了例子的均方可积性.