简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。
简介:为便于进行数据分析,首先将教据中的位点信息由原来字母编码方式转换为数值编码的方式.根据位点的编码信息和患病信息,采用Logistic回归的方法,找出某种疾病最有可能的一个或几个致病位,最.同时采用显著性检验进一步对建立的模型进行检验,证明了建立结果的合理性。此外,通过主成分分析,从原有的300个主成分中取出了225个主成分尽可能多地反映原来基因变量的信息。再通过主成分Logistic回归分析找出与疾病最有可能相关的一个或几个基因。最后,采用典型相关分析找出与相关性状有关联的基因位点。