简介:Inthispaper,wedevelopGaussianquadratureformulasfortheHadamardfi-nitepartintegrals.Inourformulas,theclassicalorthogonalpolynomialssuchasLegendreandChebyshevpolynomialsareusedtoapproximatethedensityfunctionf(x)sothattheGaussianquadratureformulashavedegreen-1.Theerrorestimatesoftheformulasareobtained.Itisfoundfromthenumericalexamplesthattheconvergencerateandtheaccu-racyoftheapproximationresultsaresatisfactory.Moreover,therateandtheaccuracycanbeimprovedbychoosingappropriateweightfunctions.
简介:FinitepartintegralsintroducedbyHadamardinconnectionwithhyperbolicpartialdifferentialequations,havebeenusefulinanumberofengineeringapplications.Inthispaperweinvestigatesomenumericalmethodsforcomputingfinite-partintegrals.
简介:Inthisstudy,anewmethodologybasedontheHadamardmatrixisproposedtoconstructquantumBooleanfunctionsfsuchthatf=I2n-2P2n,whereI2nisanidentitymatrixoforder2nandP2nisaprojectivematrixwiththesameorderasI2n.TheenumerationofthisclassofquantumBooleanfunctionsisalsopresented.
简介:1IntroductionForann×nmatrixAwhichisaninverseM-matrix,M.Neumannin[1]conjecturedthattheHadamardproductA·AisaninverseofanM-matrix.TheyhavecheckedhisconjecturewithoutfailureonUltrametricmatricesandinverseofMMA-matrices,Uni-pathicmatricesandtheWillongbyinverseM-matrices.Bo-YingWangetal.in[2]haveinvestigatedTriangularinverseM-matriceswhichareclosedundertheHadamardmultipli-cation.LuLinzheng,SunWeiweiandLiWenin[3]presentedamoregeneralconjecture
简介:
简介:通过引入两个函数,讨论了它们的凸性和单调性,由此得到下凸函数的Hadamard不等式的改进,推广了有关文献的结果.又根据GA一下凸函数与下凸函数的关系,得到GA一凸函数的Hadamard不等式的改进与推广.
简介:ForthelowerboundaboutthedeterminantofHadamardproductofAandB,whereAisan×nrealpositivedefinitematrixandBisan×nM-matrix,JianzhouLiu[SLAMJ.MatrixAnal.Appl.,18(2)(1997):305-311]obtainedtheestimatedinequalityasfollowsdet(AoB)≥a11b11nⅡk=2(bkkdetAk/detAk-1+detBk/detBk-1(k-1Ei=1aikaki/aii))=Ln(A,B),whereAkiskthordersequentialprincipalsub-matrixofA.WeestablishanimprovedlowerboundoftheformYn(A,B)=a11baanⅡk=2(bkkdetAk/detAk-1+akkdetBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).Formoreweakerandpracticallowerbound,Liugiventhatdet(AoB)≥(nⅡi=1bii)detA+(nⅡi=1aii)detB(nⅡk=2k-1Ei=1aikaki/aiiakk)=(L)n(A,B).WefurtherimproveitasYn(A,B)=(nⅡi=1bii)detA+(nⅡi=1aii)detB-(detA)(detB)+max1≤k≤nwn(A,B,k)≥(nⅡi=1bii)detA+(nⅡi=1aii)detB-(detA)(detB)≥(L)n(A,B).
简介:利用平方凸函数与凸函数的关系,证明了平方凸函数单侧导数的存在性和单调性,建立了平方凸函数与其单侧导数的不等式关系.在此基础上,给出平方凸函数定积分已有下界的改进和新的下界.给出由平方凸函数Hermite-Hadamard型不等式生成的差值的估计.
简介:Inthispaper,weproposeaghostimagingschemewithfastWalsh–Hadamardtransform,namedGIFWHT.Inthescheme,Walsh–Hadamardpatternpairsareusedtoilluminateanobjecttogeneratepairsofdetectionresults,andthecorrespondingdifferentialdetectionresultisusedastheresultasthatfromtheconventionalbucketdetector.ByperformingthefastWalsh–Hadamardtransformon2~k(kisapositiveinteger)differentialdetectionresults,theimageoftheobjectcanberecovered.TheexperimentalandnumericalsimulationresultsshowthatthereconstructiontimeofGIFWHTisgreatlyreduced,andthequalityoftherecoveredimageisnoticeablyimproved.Inaddition,GIFWHTisrobustagainstinterferencefromenvironmentalilluminationandcouldsavememory.