简介:Inthispaper,wedevelopGaussianquadratureformulasfortheHadamardfi-nitepartintegrals.Inourformulas,theclassicalorthogonalpolynomialssuchasLegendreandChebyshevpolynomialsareusedtoapproximatethedensityfunctionf(x)sothattheGaussianquadratureformulashavedegreen-1.Theerrorestimatesoftheformulasareobtained.Itisfoundfromthenumericalexamplesthattheconvergencerateandtheaccu-racyoftheapproximationresultsaresatisfactory.Moreover,therateandtheaccuracycanbeimprovedbychoosingappropriateweightfunctions.
简介:FinitepartintegralsintroducedbyHadamardinconnectionwithhyperbolicpartialdifferentialequations,havebeenusefulinanumberofengineeringapplications.Inthispaperweinvestigatesomenumericalmethodsforcomputingfinite-partintegrals.
简介:对于[0,1)上的正规权函数μ,文章利用Hadamard缺项级数构造了单位圆盘上的解析函数μ*,使得μ*在实轴上满足μ(t)μ*(t)≈1,并且sup|z|≤rμ*(z)=μ*(r)。借助解析函数μ*,将Hadamard缺项级数的系数特征由α-Bloch函数推广至更一般的μ-Bloch函数。
简介:Inthisstudy,anewmethodologybasedontheHadamardmatrixisproposedtoconstructquantumBooleanfunctionsfsuchthatf=I2n-2P2n,whereI2nisanidentitymatrixoforder2nandP2nisaprojectivematrixwiththesameorderasI2n.TheenumerationofthisclassofquantumBooleanfunctionsisalsopresented.
简介:应用Hadamard不等式及一些相关的凸函数不等式可以在调和平均值、几何平均值、算术平均值之间再插入其它的数,构成新的不等式,并给出Hadamard不等式在一元情形下的一个推广。
简介:1IntroductionForann×nmatrixAwhichisaninverseM-matrix,M.Neumannin[1]conjecturedthattheHadamardproductA·AisaninverseofanM-matrix.TheyhavecheckedhisconjecturewithoutfailureonUltrametricmatricesandinverseofMMA-matrices,Uni-pathicmatricesandtheWillongbyinverseM-matrices.Bo-YingWangetal.in[2]haveinvestigatedTriangularinverseM-matriceswhichareclosedundertheHadamardmultipli-cation.LuLinzheng,SunWeiweiandLiWenin[3]presentedamoregeneralconjecture
简介:
简介:通过引入两个函数,讨论了它们的凸性和单调性,由此得到下凸函数的Hadamard不等式的改进,推广了有关文献的结果.又根据GA一下凸函数与下凸函数的关系,得到GA一凸函数的Hadamard不等式的改进与推广.
简介:半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用MoorePenrose逆来代替一般的逆。利用分块矩阵和Schur补得到了关于半正定矩阵Moore-Penrose逆的Had-amard积的几个偏序不等式。
简介:传统的传播算子(PM)算法利用矩阵的线性运算代替特征值分解(EVD)得到噪声子空间,在一定程度上降低了运算量,但在整个空间谱的遍历搜索仍需较大计算量,且在低信噪比的情况下估计性能较差.因此,针对空域的一维信号提出了多重镜像压缩的传播算子(MIC-PM)算法,将整个空域等间距地分为多个切片,将原始噪声子空间通过Hadamard积变换,使之从一个切片镜像映射到另一个切片,得到映射噪声子空间,通过映射得到的噪声子空间与导向矢量的正交性得到真实DOA和镜像DOA.理论分析和仿真实验证明,MIC-PM算法能够将PM算法的运算量大大降低,在低信噪比情况下估计精度有所提高.
简介:ForthelowerboundaboutthedeterminantofHadamardproductofAandB,whereAisan×nrealpositivedefinitematrixandBisan×nM-matrix,JianzhouLiu[SLAMJ.MatrixAnal.Appl.,18(2)(1997):305-311]obtainedtheestimatedinequalityasfollowsdet(AoB)≥a11b11nⅡk=2(bkkdetAk/detAk-1+detBk/detBk-1(k-1Ei=1aikaki/aii))=Ln(A,B),whereAkiskthordersequentialprincipalsub-matrixofA.WeestablishanimprovedlowerboundoftheformYn(A,B)=a11baanⅡk=2(bkkdetAk/detAk-1+akkdetBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).Formoreweakerandpracticallowerbound,Liugiventhatdet(AoB)≥(nⅡi=1bii)detA+(nⅡi=1aii)detB(nⅡk=2k-1Ei=1aikaki/aiiakk)=(L)n(A,B).WefurtherimproveitasYn(A,B)=(nⅡi=1bii)detA+(nⅡi=1aii)detB-(detA)(detB)+max1≤k≤nwn(A,B,k)≥(nⅡi=1bii)detA+(nⅡi=1aii)detB-(detA)(detB)≥(L)n(A,B).
简介:利用平方凸函数与凸函数的关系,证明了平方凸函数单侧导数的存在性和单调性,建立了平方凸函数与其单侧导数的不等式关系.在此基础上,给出平方凸函数定积分已有下界的改进和新的下界.给出由平方凸函数Hermite-Hadamard型不等式生成的差值的估计.
简介:Inthispaper,weproposeaghostimagingschemewithfastWalsh–Hadamardtransform,namedGIFWHT.Inthescheme,Walsh–Hadamardpatternpairsareusedtoilluminateanobjecttogeneratepairsofdetectionresults,andthecorrespondingdifferentialdetectionresultisusedastheresultasthatfromtheconventionalbucketdetector.ByperformingthefastWalsh–Hadamardtransformon2~k(kisapositiveinteger)differentialdetectionresults,theimageoftheobjectcanberecovered.TheexperimentalandnumericalsimulationresultsshowthatthereconstructiontimeofGIFWHTisgreatlyreduced,andthequalityoftherecoveredimageisnoticeablyimproved.Inaddition,GIFWHTisrobustagainstinterferencefromenvironmentalilluminationandcouldsavememory.
简介:在强φh-凸函数的基础上,给出了强φh-m-凸函数的定义,并研究了Hermite-Hadamard不等式,得到了与之相关的几个结论,推广了前人研究的结果。