简介:【摘 要】:目的 分析骨科护士心理状态,了解相关影响因素,并在基于机器学习构建骨科护士心理状态预测模型。方法 选取2021年6月某市8所医院的168名骨科护士为研究对象,以症状自评量表(SCL-90)调查骨科护士心理状态,经单因素、多因素Logistic回归分析筛选出预测因子,基于机器学习应用支持向量机(RBF-SVM)、Logistic回归、线性判别式分析(LDA)三种分类器构建预测骨科护士心理状态模型,比较三种模型预测价值。结果 骨科护士SCL-90平均分(125.43±24.19)分,其中67例筛选为阳性,存在心理问题。经单因素、多因素分析证实护龄、社会支持程度、工作成就感、自我效能感为骨科护士心理状态独立影响因素(P<0.05)。基于机器学习,应用RBF-SVM构建的骨科护士心理状态预测模型预测价值最高,优于Logistic回归、LDA。结论 骨科护士心理状态影响因素众多,护龄、社会支持程度、工作成就感、自我效能感为主要影响因素,基于机器学习以RBF-SVM构建预测模型能够较为准确的识别心理状态不佳的护士。
简介:摘要术前是否存在淋巴结转移是影响直肠癌临床治疗决策和预后的主要因素之一,但现有的影像学标准难以准确判断淋巴结的良恶性,亟需新的方法来解决这一临床难题。近年来影像组学与深度学习在医学影像领域得到了广泛的关注,可自动检测与分割淋巴结、鉴别良恶性淋巴结及预测淋巴结转移的发生等,有望提高术前分期的准确性,进而指导治疗决策。然而不同的研究间结果差异性较大,其中一个重要的原因是各研究之间工作流程存在差异。只有明确、统一并标准化具体操作流程、开展大规模前瞻性外部验证才能实现人工智能辅助诊断模型的转化与推广。该文中以影像组学和深度学习的工作流程为线索,对其在评价直肠癌淋巴结状态方面的研究进行综述。
简介:摘要目的探讨一种基于MRI的深度学习模型预测WHO Ⅱ、Ⅲ级胶质瘤MGMT甲基化状态的价值。方法回顾性分析2016年6月至2020年6月在兰州大学第二医院经手术病理及分子病理证实的WHO Ⅱ、Ⅲ级胶质瘤患者121例的临床及影像资料,其中MGMT启动子甲基化78例、未甲基化43例。收集121例WHO Ⅱ、Ⅲ级胶质瘤的T2WI及T1WI增强序列图像,并手动选取每个患者所有包含病灶层面的图像,按照7∶3完全随机分成训练集及验证集。应用EfficientNet-B3卷积神经网络构建独立的基于T2WI、T1WI增强、T2WI联合T1WI增强的预测模型(T2-net、T1C-net、TS-net),通过ROC曲线对各个模型预测效能分别进行评价。结果验证集T2-net模型对WHO Ⅱ、Ⅲ级胶质瘤MGMT启动子甲基化状态预测的准确度为72.3%,灵敏度为64.7%,特异度为73.3%,曲线下面积(AUC为0.72),T1C-net模型的准确度为66.8%,灵敏度为68.3%,特异度为66.9%,AUC为0.72,TS-net模型的准确度为81.8%,灵敏度为63.1%,特异度为85.0%,AUC为0.78。结论基于MRI的EfficientNet-B3卷积神经网络可以预测WHOⅡ、Ⅲ胶质瘤MGMT启动子甲基化状态;TS-net模型预测性能最佳。
简介:自从1998年美国疾病控制中心提出慢性疲劳综合征(ChronicFatigueSyndrome,CFS),并制订了CFS诊断标准后,CFS作为亚健康状态的主要研究内容,在世界各国医学界被广泛研究。近年来国内外对亚健康状态的概念、表现形式、流行病学、病因、诊断标准、预防及控制措施等研究有较大的进展,但亚健康状态的诊断标准不统一,对亚健康状态的确切病因没有达成共识,缺乏有效的预防和控制措施等。因此,研究亚健康状态的重点是制定亚健康状态的检测标准,研究亚健康状态的流行病学特点和自然发病史是阐明亚健康状态的病因和致病机制以及不同预防和控制措施的有效性等。