简介:摘要 : 为提高现有苹果目标检测模型在硬件资源受限制条件下的性能和适应性,实现在保持较高检测精度的同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用的目的,本研究通过改进轻量级的 MobileNetV3网络,结合关键点预测的目标检测网络( CenterNet),构建了用于苹果检测的轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet和单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型的检测精度、模型容量和运行速度等方面的综合性能。对模型的测试结果表明,本研究模型的平均精度、误检率和漏检率分别为 88.9%、 10.9%和 5.8%;模型体积和帧率分别为 14.2MB和 8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好的果实检测效果和适应能力。在检测精度相当的情况下,所提网络模型体积仅为 CenterNet网络的 1/4;相比于 SSD网络,所提网络模型的 AP提升了 3.9%,模型体积降低了 84.3%;本网络模型在 CPU环境中的运行速度比 CenterNet和 SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台的轻量化果实目标检测模型研究提供新的思路。
简介:摘要 : 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络( CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡( DSEB)的事件驱动分簇路由算法。算法包括:( 1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;( 2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点 -主网关节点两种情况;( 3)基于频谱变化和通信服务质量( QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发 CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设 sink为中心),即在网关或簇头节点选取计算式中引入与节点到 sink的距离成正比的权重系数。算法仿真结果表明,与采用 K-medoid分簇和能量感知的事件驱动分簇 (ERP)路由方案相比,在 CRSN节点数为定值的前提下,基于 DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。
简介:摘要 : 水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和 GPS 信息,识别彩色图像模型在验证集的正确率为 84.7%,识别多光谱图像模型在验证集的正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。
简介:摘要 : 农业模型、农业人工智能及数据分析等技术贯穿于智慧农业的信息感知、信息传输、信息处理与控制全过程,是智慧农业的核心技术。为进一步明晰农业模型的内涵和作用,促进农业模型进一步研究及应用,推动智慧农业健康、稳定和可持续发展,本研究采用系统分析、比较及关系框图等方法,分析了农业模型的内涵,阐述了农业模型和智慧农业要素与过程的关系,明确了农业模型的作用并附以应用案例,比较了农业模型的国内外重要发展动态与趋势。国内外农业模型研究与应用重要进展比较表明,农业模型研究应用需要考虑农业生物要素的 4个水平、农业环境要素的 6个尺度、农业技术与农业经济要素的 6个层次并采用相应方法进行,农业模型环境要素空间多尺度研究应用有较大发展潜力;农业模型与分子遗传学、感知技术及人工智能技术结合,农业模型研究应用的公私有组织协作,粮食安全挑战将成为农业模型进一步发展的重要推动力,且需更注重将各种农业系统模拟、数据库、和谐性与开放数据及决策支持系统相连接。中国农业模型研究与应用已形成具有中国特色的作物模型系列,也融入农业模型的互比较与改进、智慧农业等世界潮流,需要抢抓机遇,加快发展。农业模型是农业系统要素内及要素间关系的定量化表达,是农业科学定量与综合的重要方法,具有认识论价值,它与感知技术的结合可以在智慧农业数据获取与处理中发挥不可或缺的作用,成为信息农业技术落地应用的重要桥梁和纽带。
简介:摘要 : 太阳能杀虫灯物联网( SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着 SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了 SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络( WSNs)中的体现,并进一步对 WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的 WSNs故障诊断方法。此外,还探讨了 SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的 WSNs故障诊断调试工具,如 Sympathy、 Clairvoyant、 SNIF和 Dustminer。最后,强调了 SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于 SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
简介:摘要 : 植被分类是高光谱影像分类中的特定应用问题,光谱特征和空间特征是植被分类中常用的两类特征,比较这两类特征的性能,对实际植被分类应用中选择合适的特征类型或两者的有效结合具有指导意义。用主成分分析( PCA)提取光谱特征时,常选择前几个主成分( PCs)作为光谱特征,虽然它们包含较大的信息量但并不能保证较高的类别可分性和分类正确率,针对这一问题本研究提出了一种混合特征提取方法,对高光谱影像在 PCA的基础上用改进的基于分散矩阵的特征选择方法选出具有较高类别可分性的 PCs用于后续分类。利用一景 AVIRIS高光谱植被影像,从分类精度的角度,首先比较了所提出的混合特征提取方法和原始 PCA、独立主成分分析( ICA)及线性判别分析( LDA) 3种常用子空间特征提取方法在高光谱影像植被分类中的性能。试验结果表明所提出的混合特征提取方法在研究中数据集 1和 2上均获得了最高的总体分类正确率,分别为 82.7%和 86.5%。与原始 PCA相比,本研究提出的混合特征提取方法的总体分类正确率,在数据集 1和 2上分别提高了 1.5%和 2.5%。由此阐明了所提出的混合特征提取方法在高光谱植被分类中的有效性。对光谱特征和空间特征在高光谱影像植被分类性能的比较中,总体上空间特征获得的分类正确率比光谱特征高,特别是 Gabor特征,在两个数据集上均获得了最高的总体分类正确率分别为 95.5%和 96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类中更具优势。本研究结果为后续改进空 -谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。
简介:摘要 : 纳米材料具有特殊的尺寸效应和优异的光电性质,已在传感分析中得到高度重视和广泛应用,大幅提高了传感分析技术的性能。近年来,智慧农业发展迅速,农产品质量安全作为农业生产的重要组成部分,对农业传感技术的灵敏度、稳定性和检测通量等指标要求越来越高。本综述简要阐述了几种常用的纳米材料的性质和特点,包括碳基纳米材料、金属纳米材料和金属 -有机框架材料等。重点论述了基于纳米材料的化学传感、生物传感、电化学传感和光谱传感等常用传感分析技术和器件,以及纳米传感分析技术在农产品质量安全,尤其在克伦特罗和三聚氰胺等危害物 ,甲硝唑、二噁英类化合物 ,违禁添加物 ,真菌毒素,锌、镉、铅等目标物,丙烯酰胺、呋喃类、硝基呋喃类抗生素监测等方面的应用。纳米材料的制备和修饰技术扔需要进一步提升,多目标、高通量纳米传感器件在实际应用中的价值广受关注,在线传感分析在农产品质量安全智慧监控方面有迫切需求需要快速、实时、在线监测。
简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。本研究基于 1990-2015年土地利用遥感监测数据,利用 GIS的空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化的综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游的水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖的发展,水田主要转化为建设用地和水系,水田主要由水系、旱地和湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群的水田变化最为剧烈,建设用地侵占水田扩张的现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统的转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量的大小,水系转化为水田损失的价值最多,建设用地侵占水田次之。不同市域的水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务中水文调节、水资源供给增强的同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田的时空变化过程及其对各项生态系统服务的影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。