简介:考虑二阶常系数线性微分方程的降阶法.首先,写出二阶齐次常系数线性微分方程的特征方程,求出特征方程的两个特征根;然后,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解.利用降阶法,可以求得微分方程的一个特解或通解.其计算方法简单和方便,在实际中具有应用价值。
简介:利用指数型二分性和不动点原理研究广义Duffing方程x^n+g(x)=h(t,x)周期解,只需要求g(x)在局部区域内为负,且h(t,x)有界这样较弱限制下,得到方程的周期解存在性的判别法.定理推广了已知结果,同时可利用该方法研究其它系统周期解的存在性.
简介:二阶变系数齐次线性方程:d^2y/dx^2+p(x)dy/dx+q(x)y=0,(其中p(x),q(x)εc′)……(1)与相应的黎卡提方程:dy/dx+p(x)y+y^2+q(x)=0……(2)的解之间存在着重要的关系,即定理1和定理2,开辟了方程(1)和(2)关系研究的途径,并作出了九个推论,其中若干个重要的结论与文中结论相同。