简介:【摘要】以“探索与发现:三角形三边关系”为例,基于Solo理论视角下,从作业目标的确定、作业设计、评价量规设计、作业成果分析,评价案例展示五个方面进行具体的教学案例分析。在层级评价中发展学生的思维,在过程中实现思维的进阶。
简介:摘要:本文基于布鲁姆学习分类视角,探讨了人工智能赋能高校混合式教学模式。通过系统分析布鲁姆教育视角在认知、情感、技能三个维度上的具体要求,本文揭示了人工智能在赋能高校混合式教学模式创新中的重要作用和相关模式。
简介:摘要:多标签图像分类是一项允许单个图像同时属于多个类别的重要机器学习任务。与单标签分类不同,多标签图像分类面临着标签间相关性、数据不平衡以及高维数据处理等挑战。随着工业界的算力提升,许多研究人员利用深度学习的强大学习能力来应对多标签图像分类中遇到的挑战,然而专门针对多标签图像分类的综合研究仍然很少。本文系统地综述了多标签图像分类的近几年的进展,首先介绍了多标签图像分类的背景以及定义,接着讨论了多标签图像分类问题挑战,然后详细回顾多标签图像分类的最新进展,其中包括了其在深度学习方面的现有研究成果,如深度卷积神经网络、Transformer,最后总结了多标签图像分类的现状。希望本文的综述能为多标签图像分类领域的研究人员和实践者提供有价值的参考和指导。
简介:摘要:近年来无监督图像分类取得了显著进展,尤其是通过对比学习和自监督学习的应用,提升了在缺少标注数据情况下的分类性能。本文综述了无监督图像分类的基本概念、方法和最新进展,重点探讨了对比学习、自编码器、视觉变换器等技术在无监督图像分类中的应用。通过比较主流的无监督方法,如SimCLR、MoCo、MAE、DINO等,本文分析了不同方法的优势和局限,展望了无监督学习在大规模图像分类任务中的应用前景。无监督学习能够有效应对数据标注困难的挑战,具有较强的泛化能力,为图像分类领域提供了有力支持。
简介:摘要:多标签图像分类是一项允许单个图像同时属于多个类别的重要机器学习任务。与单标签分类不同,多标签图像分类面临着标签间相关性、数据不平衡以及高维数据处理等挑战。随着工业界的算力提升,许多研究人员利用深度学习的强大学习能力来应对多标签图像分类中遇到的挑战,然而专门针对多标签图像分类的综合研究仍然很少。本文系统地综述了多标签图像分类的近几年的进展,首先介绍了多标签图像分类的背景以及定义,接着讨论了多标签图像分类问题挑战,然后详细回顾多标签图像分类的最新进展,其中包括了其在深度学习方面的现有研究成果,如深度卷积神经网络、Transformer,最后总结了多标签图像分类的现状。希望本文的综述能为多标签图像分类领域的研究人员和实践者提供有价值的参考和指导。