简介:Laplacian特征映射是基于欧氏距离的近邻数据点的保持,高维数据点的近邻选取最终将影响全局低维坐标.本文将鉴别信息引入到近邻数据点中,使用有鉴别信息的距离测度来代替欧式距离测度,提出了一种基于自适应测度的半监督拉普拉斯特征映射相关反馈算法FAD-SSLE(feedbackonadaptivedistancesemi-supervisedlaplacianeigenmaps).在图像检索上的实验结果表明,该方法能够有效地利用少量的监督信息来提高分类和检索性能.
简介:摘要:基于内容的图像检索离不开特征提取,而局部特征提取是当前研究热点之一,由于局部特征之间的独立性和高语义性,此种方法在基于内容的图像检索领域有着良好的表现[1]。为了进一步提高局部特征的语义性、提升特征提取模型的表现力,本文引入视觉注意力机制与分组卷积思想对当前的局部特征提取模型进行优化,经实验证实,优化后的模型提取出的局部特征在Oxford数据集以及Paris数据集有着更好的检索效果。