学科分类
/ 25
500 个结果
  • 简介:利用匹配渐近展开法,讨论了一类边界层位置转移的非线性摄动边值问题,并且通过对参数的五种不同取值的分类探讨,得到了该问题具有左边界层、右边界层或内部层之一的结论(其中左、右边界层又各分为两种类型).进而给出了该问题解的一致有效的零次渐近解,推广并改进了已有的结果.

  • 标签: 非线性奇摄动方程 边界层 匹配 特异极限 渐近展开式
  • 简介:研究了具有边界摄动的非线性泛函椭圆型方程摄动边值问题.在适当的条件下,利用伸长变量、微分不等式理论,讨论了问题解的渐近性态和原问题解的存在唯一性.更多还原

  • 标签: 非线性 椭圆型方程 奇摄动
  • 简介:针对在Shishkin网格上数值求解含内点层的奇异摄动,在迎风有限差分格式的基础上,提出了一种基于差分进化算法的Shishkin网格参数估计方法。利用该方法可计算出最优的Shishkin网格参数,同时获得了相应的数值结果。数值实验表明差分进化算法具有很好的全局寻优能力和较快的收敛速度,能有效解决传统迭代优化算法对初值的依赖问题

  • 标签: 差分进化算法 奇异摄动 参数估计 SHISHKIN网格
  • 简介:讨论了形如x′(t)=f(x(t),x(t-τ1(t)),…,x(t-τm(t)),y(t),y(t-τ1(t)),…,y(t-τm(t)))和εy′(t)=g(x(t),x(t-τ1(t)),…,x(t-τm(t)),y(t),y(t-τ1(t)),…,y(t-τm(t)))(0<ε1)的非线性多变延迟奇异摄动系统的理论解的稳定性,得到了系统稳定的一个充分条件.在此条件下还证明了隐式Euler方法的数值解是稳定的.

  • 标签: 多变时滞奇异摄动问题 EULER方法 稳定性 插值
  • 简介:考虑了一个二阶摄动非线性边值问题,利用匹配展开法研究了该问题的激波解,讨论了该问题的激波位置与边界条件的关系.

  • 标签: 非线性 边值问题 匹配法 激波解
  • 简介:本文应用多重尺度法构造出非线性微分方程组的解的渐近展开式。并用微分不等式的技巧,证明原问题的解的存在性,且给出解的一致有效渐近估计.

  • 标签: 奇摄动 多重尺度法 渐近展开式 微分不等式
  • 简介:主要研究一类具有双参数的拟线性微分方程的摄动Robin边值问题.利用微分不等式理论,对两参数分三种不同情形对解的构造进行分析.并得到相应问题在各情形下的渐近解和余项估计.

  • 标签: 奇摄动 双参数 ROBIN问题 微分不等式
  • 简介:研究带有高阶转向点的二阶非线性微分方程的边值问题{εy〃=f(t)y12+g(t,y)y(a,ε)=A,y(b,ε)=B的奇异摄动现象.在一定的条件下,得到了摄动解关于退化解的渐近性质及误差估计.

  • 标签: 奇异摄动 转向点 二次问题
  • 简介:本文讨论如下边值问题:Lεy=ε^5y^(5)+ε^2a(x)y^(4)+εb(x)y^″′+c(x)y″+f(z,y)=0y′(-1,ε)=A(ε),y″(-1,ε)=B(ε),y″′(-1,ε)=C(ε),y′(0,ε)=D(ε),y(0,ε)=B(ε)x=0是转向点(c(0)=0),而在x=-1处出现多重边界现象,对不同层次采用不同的伸长变量。构造具有不同级的边界层校正项,得到关于解的一致有效的渐近展开式和有关的余项估计。

  • 标签: 转向点 边值问题解 奇摄动 边界层 余项 渐近展开式
  • 简介:给出了在一些Shiskin型网格[21,23,19,18]上,利用一个任意次的混合有限元方法在L2-模下得到奇异摄动解的最优一致收敛阶的一个统一方法.通过研究一个四阶问题,定常和不定常问题,我们显示了这个方法的一般性.结果显示非传统Shiskin型网格上的误差估计比传统Shiskin型网格上的误差估计更容易得到.但两种网格给出的误差估计是相容的,它们证明了Roos的猜想[21]是合理的.

  • 标签: 有限元法 奇异摄动 最优一致收敛 Shiskin型网格 误差估计 Roos猜想
  • 简介:你好,我是一名大学生,现在想买一部手机,我想了解一下多普达565和索尼爱立信K700c之间有什么样的区别?多普达565和索尼爱立信K700c出自两个完全不同的厂商.多普达565使用的是微软的SmartPhone操作系统,而K700c则是SONY自家的系统。如果论功能来说,多普达565可扩展性和功能都更丰富,更好玩,但K700c外形更漂亮,屏幕表现更为优秀。

  • 标签: K700 索尼爱立信 手机 屏幕 功能 外形