简介:导航雷达在采集、传输和显示过程中,由于多种因素的影响导致最终形成的图像中舍有大量的噪声,影响了使用者对导航信息的分析和应用。传统的雷达图像去噪算法大多采用小波变换,但这种方法存在边缘模糊等问题。为了去除导航图像的噪声并解决小波变换中存在的边缘模糊问题,本文提出用基于多尺度几何变换的图像去噪方法对导航雷达图像进行处理,并利用基于多尺度几何变换的方法(包括基于Curvelet系数维纳滤波去噪方法和基于Contourlet域去噪方法)和基于小波变换的BayesShrink方法分别对含有模拟杂波和噪声的导航雷达图像进行仿真实验。实验结果表明:与基于小波变换的图像去噪方法相比,基于多尺度几何变换去噪方法能够更加有效去除雷达杂波和噪声。
简介:极化是雷达目标具有的特性之一。以电磁散射计算仿真的圆锥形弹头模型、球形和圆柱形诱饵模型为研究对象,在极化不变量理论基础上对这些简单目标的极化特性进行了试验分析研究,提出了一种新的组合极化不变量特征(功率矩阵迹与行列式的比值)用于雷达目标识别,并给出了其对应实际的物理意义。文中以SVM为分类器,提出基于功率矩阵迹、去极化系数和功率矩阵迹与行列式的比值特征进行分类识别,结果表明,该方法可以有效地将弹头和诱饵进行分类识别。
简介:用合成分析方法探讨MCC热力学结构的演变规律,结果表明:MCC整个生命史里,对流层中下部为正涡度区,200hPa以上为负涡度区;发展时刻辐合区突然抬升;MCC前期的垂直上升速度最大中心高度低于后期的;MCC的高低空的冷心、中层暖心的温度结构在成熟期以后不明显
简介:道路目标检测在智慧城市建设中扮演着重要角色,而Faster-RCNN是目前主流的目标检测网络结构算法.本文在Faster-RCNN卷积神经网络结构基础上增加了特征金字塔网络层,并采用关注损失函数替代了原有的交叉熵损失函数.其中增加的特征金字塔特征融合层可以提取到检测图片中更具鲁棒性和一般性的前背景特征,而通过关注损失函数则能起到缓解检测图片中的正负样本不均的情况.最后,在公开数据集KITTI上实验证实,改进的目标检测算法能实现提高原有的Faster-RCNN目标检测准确率.
简介:利用区域气象观测资料、常规观测资料、雷达和NCEP资料,对2010年6月19日江西创历史大暴雨过程的成因及中尺度特征进行分析。结果表明:此次过程发生在江西典型暴雨形势背景下,具有显著的中尺度特征;强降水落区位于地面中尺度切变线附近,中尺度系统提前或同时于强降水生成;强降水位于低层水汽通量大值中心前端和水汽强辐合的重叠区域,与强上升运动区及θse≥78℃高能舌北侧密集锋区对应;中尺度对流系统(MCS)合并使降水加强,东西向直线排列的MCS不断向东移动造成持续强降水,落区位于TBB低值区和邻低值中心大梯度区;中-β尺度强回波带稳定且具高降水效率,并形成"列车效应";辐合线、逆风区、中气旋和中层冷侵入等促进强降水发生和维持。