简介:环尺具有P稳定度是指若有aR+6R=R,则存在Y∈P(R)使得a+by是尺中的可逆元.其中P(R)是环R的子集并满足如下性质:对于任意的可逆元u和P∈P(R)都有up,pu∈P(R).通过对环尺的研究,统一了关于具有可逆-1稳定度、(5,2)-稳定度、弱可逆-1稳定度和稳定度为1的环的一些已知结果.当环的一个元素是一个可逆元和一个正则元之和,则称这个元素为UR。如果环尺具有P稳定度且P(R)是环中所有UR元素组成的集合,则称环R具有UR-稳定度.研究了该环的性质,并证明了如果尺具有UR-稳定度,则尺上的任意n阶矩阵环也具有UR-稳定度.