简介:Curvelet变换用于影像融合能有效保持影像的光谱信息,利于提取影像不同尺度、不同方向的细节特征。为检测Curvelet变换对影像分类的影响,文章首先采用PCA方法、Curvelet变换方法对IKONOS影像进行融合;然后对原多光谱影像和融合影像进行监督分类,分类时采用相同的训练样本;最后运用多种参数对结果进行目视、定量评价。总体结果显示:基于Curvelet变换的融合影像各波段的信息熵以及与原影像的平均结构相似性程度均高于基于PCA的融合影像,原多光谱影像、基于PCA的融合影像和基于Curvelet变换的融合影像的总体分类精度分别为:77.27%、70.00%和80.09%,其中基于Curvelet变换的分类影像的地物边缘光滑度最高。
简介:摘要:本文针对遥感影像的图像分类与地物识别问题展开研究,提出了一种基于深度学习算法的新型解决方案。首先,采用卷积神经网络(CNN)对遥感影像进行特征提取与学习,提高了图像分类的准确性和效率。其次,引入了多尺度和多模态数据融合技术,进一步提升了地物识别的精度和鲁棒性。实验结果表明,所提出的算法在遥感影像分类与地物识别任务上取得了优异的性能,具有较强的实用性与推广价值。
简介:文章针对株洲县堂市乡某部分区域高分辨率影像,采用eCognition的多尺度分割和面向对象的最邻近法对影像进行分类,同时与ENVI5.3软件平台下的最大似然法分类结果进行了对比分析,并以野外验证后的目视解译为基准进行精度评价。结果表明:基于eCognition平台下的面向对象的分类方法避免了传统分类结果噪声严重、精度低的缺陷,其总体分类精度为80%,Kappa系数为0.7397,比传统分类结果精度高,比目视解译效率高。
简介:摘要人们对于遥感影像的应用需求不断增强,特别是对于高分辨率遥感影像,传统信息提取方法已不能满足要求。本文通过确定分类方案、面向对象图像分割、选择样本、根据类别选定特征,对高分辨率遥感影像进行分类,并与基于像素的最邻近分类法的分类结果进行比较;结果表明基于对象和特征的分类方法具有明显优越的分类效果,更能满足实际需要。