简介:摘要:本论文旨在研究基于Mask计算优化提升电子围栏目标检测效率的方法,我们提出了一种新的电子围栏目标检测计算原理,即利用mask图例分割来计算电子围栏和目标框。该方法通过将围栏区域和目标区域分别用不同的遮罩图像进行标识,然后利用掩膜mask计算技术来实现目标检测和围栏计算的优化。我们使用了先进的YOLOv5模型来处理目标检测识别,该模型具备强大的目标检测和识别类别计算能力。通过结合这一模型和mask图例分割的计算原理,我们能够更准确地检测电子围栏和目标框重合程度,即判断某些禁止物体是否真的在电子围栏里,并且在计算效率上取得了显著的提升。本研究的结果表明,基于Mask计算优化电子围栏目标检测相比传统的IOU计算两者重叠区间速度提升30%,准确率提升22%。
简介:摘要:本论文旨在研究基于Mask计算优化提升电子围栏目标检测效率的方法,我们提出了一种新的电子围栏目标检测计算原理,即利用mask图例分割来计算电子围栏和目标框。该方法通过将围栏区域和目标区域分别用不同的遮罩图像进行标识,然后利用掩膜mask计算技术来实现目标检测和围栏计算的优化。我们使用了先进的YOLOv5模型来处理目标检测识别,该模型具备强大的目标检测和识别类别计算能力。通过结合这一模型和mask图例分割的计算原理,我们能够更准确地检测电子围栏和目标框重合程度,即判断某些禁止物体是否真的在电子围栏里,并且在计算效率上取得了显著的提升。本研究的结果表明,基于Mask计算优化电子围栏目标检测相比传统的IOU计算两者重叠区间速度提升30%,准确率提升22%。