简介:本文在结合环R中引进了模双边理想B诣(幂)零的概念和模B左(右,双边)零化子的概念。大中给出了一些有关性质以及模B幂零性的一些定理和推论。
简介:结合环R称为强诣零Armendariz的如果对于R[x]中任意两个多项式f(x),g(x)当f(x)g(x)∈Nil*(R)[x]时,有ab∈Nil*(R),这里a,b分别是f(x),g(x)的任何系数,而N*(R)为R的素根。证明了强诣零Armendariz环R的素根与上诣零根一致;强诣零Armendariz环是诣零Armendariz环;证明了R是强诣零Armendariz环当且仅当R的每个子环是强诣零Armendariz环,当且仅当R的多项式环R[x]是强诣零Armendariz环,当且仅当R的上三角矩阵环Tn(R)是强诣零Armendariz环;R是强诣零Armendariz环当且仅当R/Nil*(R)是Armendariz环。并推广了弱Armendariz环的两个结果。
简介:设,是环R的理想。并且R/I是诣零Armendariz环.本文给出了环R是诣零Armendariz环的几个充分条件.此外,我们还讨论了环R和R[x]中的弱零化子之间的关系,给出了R是诣零Armendariz环的一些等价条件.
简介:研究了一类七次系统三次幂零奇点的中心判定问题。利用Mathematica软件进行计算并化简,推导出该七次微分系统原点的前9个拟Lyapunov常数,并在此基础上进一步分析讨论,从而得出原点成为中心的充要条件。