简介:古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。
简介:摘要当前高速公路的交通量呈明显的递增趋势,并且我国的自然环境条件十分复杂,在高强荷载和复杂环境的作用下,高速公路的病害特别是路面病害日益增多,因此我国通过建立路面管理系统为高速公路网的养护管理提供一个核心的平台。但是由于我国的路面管理系统建立时间很短,对于经验的总结和设备的先进程度仍然处在低水平线上。所以提高路面管理的现代化、科学化及智能化称为当下十分重要的科研努力方向。本文基于MATLAB的BP神经网路预测模型的分析,以加强路面管理数据分析的行为能力为目的,采用科学的管理理论及模糊数学的分析方法,为路面管理人员提供准确的路面使用性能的评测,尤其是本文提出一种自主学习且容错率较高的数学分析方法,这对于路面管理系统的数据采集、分析、评估,甚至对于整个高速公路网及社会经济的长期稳定发展具有很重要的理论和现实意义。