简介:本文研究了一般Riemann积分(即k-重积分)与Lebesgue积分的关系,证明了:若函数f在有界闭域D()Rk上Riemann可积,则f在D上Lebesgue可积且积分值相等.作为应用,讨论广义Riemann积分(即瑕积分与无穷限积分)与Lebesgue积分的关系.进而,给出了计算几类Lebesgue积分的方法.
简介:本文给出了Riemann(黎曼)积分Lebesgue(勒贝格)积分和Henstock积分的关系,并从度量空间加以阐明
简介:积分的计算有很强的技巧性,有些题目利用一般方法计算很繁琐,甚至有的很难得到正确结果.而恰当地利用被积函数与积分区间的对称性可以使积分计算化繁为简.如此可以达到事半功倍的效果.定理1:设f(x)在[-a,a]上连续,且为奇函数,则∫-aaf(x)dx=0;若f(x)在[-a,a]上为偶函数,则∫-aaf(x)dx=2∫0af(x)dx.此定理的证明许多教材已经给出,在此省略.注:定理中的函数必须是对称区间上的奇、偶函数,才会有定理的结论.例1:计算I=∫-11|x|In(x+(1+x2)1/2)dx解;因为区间[-1,1]为对称区间,且被积函数f(x)=|x|In(x+(1+x2)1/2)为连续的奇函数,所以由定理1,可得I=0.
简介:在复变函数中,根据柯西—古萨定理,若f(Z)=u(x,y)+iv(x,y)解析,则积分∫_гf(z)dz=∫_гudx-vdy+i∫_гvdx+udy(1)与路径无关(本文中函数的解析性和曲线积分的路径无关性,都是对一定区域而言的,以下不再重复声明),从而,曲线积分∫_гudx-vdy=Re∫_гf(z)dz(2)∫_гvdx+udy=Im∫_гf(z)dz(3)都与路径无关。与路径无关的曲线积分和解析函数的积分是否有一定的内在联系呢?(2)和(3)式表明至少有一些与路径无关的曲线积分,可以用解析函数的积分表出。本文讨论了曲线积分
简介:Stieltjes积分(b∫a)f(x)dg(x)是一种与两个函数f(x)和g(x)都有关系的积分,本文对这种积分的一个存在定理中这两个函数的联系进行讨论,并对Stieltjes积分与Riemann积分的定义作比较,指出它们定义中的根本区别。