简介:1998年,王玉文,季大琴对于Banach空间中的线性算子引进了Tseng度量广义逆。文章补充说明,当空间为Hilbert空间时,Tseng度量广义逆的定义与Tseng广义逆的原始定义相同,当空间为n维欧几里德空间,T为矩阵算子,T的Moore-Penrose度量广义逆定义的(i),(ii),(iv)四个式子退化为Penrose方程。
简介:采用了有别于同一法的方法证明Moore-Penrose广义逆距阵的唯一性,并给出了求距阵A的Moore-Penrose广义逆的另一方法.
简介:选择适当的测试函数,根据φ和μ的函数性质,给出了单位圆盘上Zygmund型空间之间广义加权复合算子μC_φD^m有界性的充要条件。
简介:术文讨论了加权Bergman空间到Zygmund空间(小Zygmund空间)的广义复合算子Cφ^h的有界性和紧性特征,得到了以下约结果:(1)Cφ^h是加权Rergman空间到Zygmund空间的有界算子和紧算子的充要条件;(2)Cφ^h是加权Bergman空间到小Zygmund空间的有界算子和紧算子的充要条件.
简介:有效求解矩阵Penrose广义逆是一个困难的问题.首先将求解Penrose广义逆转化为求最小极值问题,结合粒子群算法和差分算法的优点,设计了混合智能算法.仿真实验结果表明:混合智能算法求解Penrose广义逆是有效的和可行的.算法易于计算机实现,计算精度高.
简介:使用新的分析技巧研究了对于广义最速下降逼近法收敛到m-增生算子零点的充要条件,所得结果推广了几位作者早期与最近的相应结果.