简介:一、引言季节波动是指由于自然条件或社会条件的影响,经济现象在一年内随着季节的转变而引起的周期性的波动。一般来说,在一些经济现象除了受季节波动影响之外,它还受到经济发展的长期趋势的影响以及除了上述因素以外的不规则波动。为了能对受季节波动影响的经济现象进行预测,一般常用的方法是将影响经济现象的各个主要因素加以分解,进行单独测算,然后再进行迭加,从而对受季节波动影响的经济现象进行预测。对于受季节波动影响的经济变量Y,它可以分解为Y=T+S+I(其中T为长期趋势,S为季节波动,I为不规则变动)、或Y=T·S+I或其他形式。不论是加法模型还是乘法模型,常用的方法都是分离出长期趋势T和季节波动S或不规则变
简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。
简介:结合支持向量机和神经网络各自的优点,提出了一种新颖的自适应支持向量回归神经网络(SVR—NN).首先,利用支持向量回归方法确定SVR—NN的初始结构和初始化权值,基于支持向量自适应地构造SVR—NN神经网络的隐层节点;然后,使用退火过程的鲁棒学习算法更新网络节点参数和权值.为了验证所提出方法的有效性,给出了自适应SVR-NN应用于非线性动态系统辨识的实例.仿真结果表明,与以前的神经网络方法相比,基于SVR-NN网络的辨识方案能获得相当好的性能,它具有很快的收敛速度.因此,自适应的SVR—NN为非线性系统辨识提供了极有吸引力的新途径.
简介:多因变量综合线性回归中变量筛选问题,一直受到学术界的高度关注。针对当前不少学者对多因变量综合线性回归中变量筛选问题的错误认识,尤其是"偏最小二乘回归模型"涉及数学过于深奥,很多学者不能理解其原理,不能适合采用该模型的条件而盲目使用。在利用线性代数中正定与半正定矩阵的性质和矩阵的特征理论的基础上,剖析三种常规线性回归建模方法的原理,揭示"偏最小二乘回归模型"的本性,并在肯定其优越性的同时也指出其应用上的局限性;提出实际应用中合理选择回归模型的若干标准,建立一种容易掌握操作简便且可替代OLS法的"超平面回归模型";利用一个实例对几种回归建模方法的应用效果进行比较和说明。
简介:传统图像局部方向特性的自适应全变分去噪算法,通过计算图像局部方向的角度矩阵,用优化最小化算法迭代求解实现图像去噪,不能保存图像边缘信息,去噪效果及稳定性差。提出基于能量回归滤波全变分图像自适应去噪算法,通过能量回归尺度空间滤波法获取滤波图像时,对源噪声图像进行多尺度二进小波分解获取小波变换系数及低频粗糙分量,采用能量回归滤波法计算小波系数并对小波系数进行重构,获取源图像的滤波图像。采用基于图像局部方向特性的自适应全变分去噪算法从含噪滤波图像中分离出轮廓尺度图像,对含噪图像同轮廓尺度图像实施差计算获取含噪残差纹理细节图像,基于该图像运算获取规整化可信度参数λ后,采用基于参数P与λ的全变分图像自适应去噪算法对带噪滤波图像进行处理,得到消噪图像。实验结果表明:所提算法去噪效果佳,其具有较高的稳定性和效率。