简介:Therecentlyinventedartificialbeecolony(ABC)algorithmisanoptimizationalgorithmbasedonswarmintelligencethathasbeenusedtosolvemanykindsofnumericalfunctionoptimizationproblems.Itperformswellinmostcases,however,therestillexistsaninsufficiencyintheABCalgorithmthatignoresthefitnessofrelatedpairsofindividualsinthemechanismoffindinganeighboringfoodsource.ThispaperpresentsanimprovedABCalgorithmwithmutuallearning(MutualABC)thatadjuststheproducedcandidatefoodsourcewiththehigherfitnessbetweentwoindividualsselectedbyamutuallearningfactor.TheperformanceoftheimprovedMutualABCalgorithmistestedonasetofbenchmarkfunctionsandcomparedwiththebasicABCalgorithmandsomeclassicalversionsofimprovedABCalgorithms.TheexperimentalresultsshowthattheMutualABCalgorithmwithappropriateparametersoutperformsotherABCalgorithmsinmostexperiments.