简介:BP神经网络分类器在信号识别领域得到了比较广泛的应用,针对其低信噪比环境下识别率相对较低的问题,引入人工蜂群算法(ABC),将求解BP神经网络各层权值、阂值的过程向蜜蜂寻找最优蜜源的过程转变,最后阐述了一种以人工蜂群算法为基础的神经网络分类器设计方法(ABCBP算法),并以2ASK,2FSK,2DPSK信号为例,对信号进行小波包分解后,将信号各频段的能量值数据作为实验样本,对其进行了信号分类。仿真结果表明:基于人工蜂群算法的优化BP神经网络分类器,即使在5dB的信噪比环境下,仍可达到94%以上的识别率,并具有较好的稳定性,这为信号识别领域中分类器的设计提供了一个很好的理论依据。
简介:摘要人脸识别技术在实际生活中应用广泛,本文首先回顾近年来人脸识别的一般方法超分辨率算法、基于稀疏表示的分类方法、基于核范数的矩阵回归方法,并分别指出现有方法的适用范围及其局限性。最后对现阶段人脸识别在实际应用中亟待解决的问题进行总结,并展望今后人脸识别研究的发展趋势。
简介:目的:面对我国人参价格涨跌频繁的现状,基于历史价格数据探索一种人参价格预测方法,进而有预见性的指导人参的种植、经营,防范伤农、伤商事件的发生。方法:以生晒55支规格的人参为代表,选取2012年6月至2018年5月的历史价格为实验数据,以2012年6月至2017年8月的价格为训练集,以2017年9月到2018年5月的价格为验证数据集,分别基于BP神经网络与ARIMA方法,构建人参(生晒55支规格)的价格预测模型,并将二者的预测效果进行比较。结果:ARIMA模型在平稳期的预测较为精确,BP神经网络能应对价格的突变预测。结论:BP神经网络预测模型整体优于ARIMA模型,进一步证实了BP神经网络用于价格预测的优越性。