简介:摘要胰岛素样生长因子2 mRNA结合蛋白1(IGF2BP1)是机体发育过程中mRNA代谢和转运的关键调控因子。近年来研究发现,IGF2BP1在肝癌、肺癌、结肠癌、卵巢癌、乳腺癌等多种肿瘤中异常表达。IGF2BP1不仅与肿瘤细胞的增殖、迁移和侵袭有关,而且还与患者不良预后密切相关。进一步研究IGF2BP1在恶性肿瘤中的作用机制有望为肿瘤靶向治疗提供新的方法。
简介:摘要:本文简述了人工神经网络的概况以及BP神经网络模型,通过分析BP神经网络对混凝土配合比、强度以及寿命的预测,表明BP神经网络预测精度较高,已经广泛的运用在混凝土预测中,具有实用价值。
简介:摘要:本文介绍了传统NAS-RIF算法的原理,针对NAS-RIF算法对噪声敏感的不足,加入正则化参数,改进了NAS-RIF算法,实验结果证明,与传统的复原算法相比,改进后的算法图像复原效果较好,峰值信噪比和复原后的视觉效果较优,图像细节清楚度有所提高,证明了改进算法的有效性。
简介:摘要:本文介绍了一种新的高效优化方法“基于教与学的优化”。该方法研究了教师对学习者的影响。与其他受自然启发的算法一样,TLBO也是一种基于总体的方法,并使用大量的解决方案来进行全局解决方案。人口被认为是一组学习者或一组学习者。TLBO的过程分为两部分:第一部分是“教师阶段”,第二部分是“学习阶段”。“教师阶段”指向教师学习,“学习者阶段”指通过学习者之间的互动来学习。
简介:摘要:本文主要针对高等教育问题进行了相关研究,利用BP神经网络以分数评价国家高等教育系统的健康状况。首先收集了多个国家教育影响因素的数据,选择出“国家人均GDP”、“国家高校升学率”等八个指标初步建立简单的指标体系。其次对八个国家进行模型应用,对模型进行进一步的优化,对其提出优化后的合理蓝图。最后建立时间序列的BP神经网络预测模型,预测出原状态下2020年中国评分从而得知此模型稳定性较好。
简介:摘要:全球导航卫星系统(GNSS)是一种高度精确、连续、全天候和近实时微波技术,其中GPS的应用最为广泛,目前GPS已经能够达到毫米级的平面坐标定位精度,这种优势能够大大缩减人工测量的时间,提高效率,但是由于GPS所测高程和我国工程测量中使用的高程基准面不同使得GPS高程测量值的应用受到限制。针对将GPS高程测量值通过拟合方法转换为工程坐标下的正常高的研究有着广泛的实用价值。本文采用目前流行的BP神经网络法对测区范围内GPS所测得的大地高数据进行拟合,基于GPS测量得到已知点坐标和高程异常,建立两者之间的神经网络关系,并对网络进行训练,根据预测值和实际值之间的差异对网络中的权值和阈值进行重复计算修改,最后使得预测与实际值之间的误差满足要求,计算外符合精度并对未知点的高程异常值进行预测。通过MATLAB实现BP神经网络高程拟合并与多项式曲面拟合方法进行精度比较,最后得出BP神经网络拟合精度高且相比于多项式曲面拟合法具有准确性,可靠性和稳定性。
简介:摘要:本文研究目的在于寻找最优的抗疫物资运输路径。Dijkstra算法是计算最优路径的的代表算法,针对其存储效率和计算效率过低问题,提出用邻接表代替权重邻接矩阵、采用双向循环链表进行快速增删、同时利用快速排序对权重距离进行排序的改进方法,最后综合考虑实际道路的综合通行能力对改进的Dijkstra算法进行实例验证。
简介:摘要:在现代化的今天,我们的周围被数量众多的数据所环绕,如何从这些数据中得到自己想要的内容成为了不可逃避的话题。由于数据量每天都在大量增加,继续使用传统的推荐系统来进行数据的推荐已经不在适合,可能会出现推荐不准确、数据处理速度过慢等情况,导致用户无法准确的得到自己想要的结果。针对以上情况,本实验使用Hadoop框架,利用Hadoop分布式计算的特点并行处理大量数据,提高运行的效率[1]。并采用均值漂移聚类算法对数据集进行处理,解决矩阵稀疏性的问题,使推荐精度提高。