简介:k均值算法是一个常用的局部搜索算法,它的主要缺陷是容易陷入局部极小,并且该局部极小解与全局最优解往往有很大的偏差.本文提出一个基于K-均值的迭代局部搜索文档聚类算法.该算法以k均值算法所得到的解作为初始解,从该初始解开始作局部搜索,在搜索过程中接受部分劣解.当解无法改进时,算法对所得到的局部极小解做适当强度的扰动后进行下一次的迭代,以跳出局部极小,从而拓展了搜索的范围.实验结果表明该算法对文档数据集聚类的正确性达99%以上.
简介:摘要本文通过对大量工程变更数据进行归纳,采用K均值聚类分析方法对工程变更数据进行分类,并进行参数测定,通过计算不同导致工程变更发生原因指标到各聚类中心的距离,来拟合预测未来类似情况下新建输变电工程中同一原因导致的工程变更对造价的影响程度,预测分析结果为今后类似建设工程的造价控制提供了参考依据。
简介:摘要本文浅谈了数字图像处理的发展概况、研究背景并对彩色图像K-means算法进行分析.主要详细谈论了是对K-means算法的一些认识,并且介绍K-means聚类的算法思想、工作原理、聚类算法流程、以及对算法结果进行分析,得出其特点及实际使用情况。
简介:摘要交通拥挤事件是城市公共交通系统中造成交通延误的最主要原因之一,快速有效的识别拥挤事件是城市交通控制策略的重要环节。针对交通流相态及其交通因素类属方面存在的模糊性,本文在分析交通流特征时对其进行了聚类软化分。根据交通流特性,运用模糊C均值聚类算法对交通流各要素进行模糊分析处理。通过对交通量隶属度的判别和聚类分析结果,找出不同交通流间的亲疏程度和相似性,将具有相近特性的交通流归纳在一类,从而判别出交通流相态属性,确定交通拥挤事件的发生,达到对交通拥挤事件识别的目的。
简介:目的采用反映血管新生状态的指标经模糊C均值聚类对星形细胞肿瘤病理学分级进行探讨。方法采用含有正常成人脑组织、弥漫性星形细胞瘤(WHOⅡ级)、间变性星形细胞瘤(WHOⅢ级)、胶质母细胞瘤(WHOⅣ级)及阳性对照组织的168点矩阵的组织芯片,通过免疫组织化学SABC双标法标记内皮细胞和血管内皮生长因子,以Image-ProPlus5.1中文版图像分析软件对染色结果及血管内皮生长因子阳性单位、微血管密度及微血管平均周长等指标进行测定。采用单因素分析方法筛选与星形细胞肿瘤病理级别相关的参数,以矩阵实验室数学软件提供的模糊C均值聚类函数参数作为聚类对象,将不同的组织切片参数值进行模糊C均值聚类,所得聚类值分别赋值为星形细胞肿瘤病理分级值。结果(1)在不同病理分级组之间,星形细胞肿瘤血管内皮生长因子阳性单位差异具有统计学意义(P=0.000),各病理分级组间两两比较差异亦有统计学意义(均P〈0.05)。(2)在不同病理分级组之间,星形细胞肿瘤微血管密度值差异有统计学意义(P=0.000),两两比较差异亦有统计学意义(均P=0.000)。(3)星形细胞肿瘤微血管平均周长,Ⅱ级组与Ⅲ级组、Ⅱ级组与Ⅳ级组比较差异有统计学意义(均P=0.000),而Ⅲ级组与Ⅳ级组之间差异无统计学意义(P=1.000)。(4)与WHO病理分级相比,模糊C均值聚类产生的星形细胞肿瘤病理分级值对Ⅱ、Ⅲ、Ⅳ级等级别的诊断符合率分别为85.71%、48.39%和78.95%,总体正确率达68.46%。结论星形细胞肿瘤血管内皮生长因子阳性单位、微血管密度和微血管平均周长等项指标的模糊C均值聚类值与星形细胞肿瘤病理分级值比较符合,可应用模糊C均值聚类法对星形细胞肿瘤的病理分级进行辅助推测。
简介:摘要:经验模态分解(EMD)算法是由 NE. Huang 等人提出的一种将信号分解成特征模态的方法,它不以任何已经定义好的函数作为基底,而是将所分析的信号x(t)分解为一组本征模函数(Ci)和一个残余项(rn),涵盖了原始振动信号在各种时间尺度上的局部细节特征 。可以用于分析非线性、非平稳的信号序列,具有良好的时频特性。在基于经验模态分解(EMD)的基础上,利用k均值算法实现故障类型和故障程度的正确分类。