简介:集值映射的导数形式众多,常见的如相依导数、相邻导数、约切导数,给出了一个满足合理假设的集值映射,借助该映射探究了集值映射上述三种导数的一致性,并利用该假设得到“preinvex映射必是伪凸映射”的简单证明。
简介:设L是希尔伯特空间H上的一个CSL,AlgL是相应地CSL代数。一族线性映射δ={δn,δn:AlgL→AlgL,n∈N}在Ω∈AlgLJordan高阶可导,如果对所有n∈N,∑i+j=n[δi(A)δj(B)+δj(B)δi(A)]=δ(Ω),其中A,B∈AlgL,AB+BA=Ω。给出了一族线性映射δ={δn:AlgL→AlgL}在0点Jordan高阶可导的充要条件。利用此结果证明了不可约CDCSL代数,因子vonNeumann代数上的套子代数(特别地,希尔伯特空间套代数)到其自身的一族线性映射δ={δn,n∈N}在0点Jordan高阶可导当且仅当它是一个高阶导子。
简介:设L是希尔伯特空间H上的一个CSL,AlgL是相应地CSL代数。一族线性映射δ={δn,δn:AlgL→AlgL,n∈N}在Ω∈AlgLJordan高阶可导,如果对所有n∈N,∑i+j=n[δi(A)δj(B)+δj(B)δi(A)]=δ(Ω),其中A,B∈AlgL,AB+BA=Ω。给出了一族线性映射δ={δn:AlgL→AlgL}在0点Jordan高阶可导的充要条件。利用此结果证明了不可约CDCSL代数,因子vonNeumann代数上的套子代数(特别地,希尔伯特空间套代数)到其自身的一族线性映射δ={δn,n∈N}在0点Jordan高阶可导当且仅当它是一个高阶导子。更多还原