简介:形如f″(x)+g(x)·f(x)=0的微分方程,其中g(x)是x的周期函数.这类方程就是马奇耶方程.马奇耶(Mathieu)方程在实际工程中有着广泛的应用.关于它的周期解的研究,是结构动力屈曲分析的理论基础;同时也是常微分方程稳定性理论的—个重要内容.在马奇耶方程的周期解中,稳定与不稳定解的分界线即临界解是十分重要的.本文给出了临界解的求解方法,证明了临界频率方程的收敛性,讨论了某些干扰因素对临界解的影响。在实际工程中,这些干扰因素体现在结构阻尼,结构初始缺陷,结构的非线性几何点系结构的纵向惯性矩及转动惯性矩、复合材料的耦合效应等.计算结果表明,对于马奇耶方程的微小干扰,都将严重影响其临界解甚至改变解的性质.因此,在分析结构动力屈曲问题时,必须考虑问题所能包含的上述各项因素.
简介:Itisawell-knownfactthatcharactersofafinitegroupcangiveimportantinformationaboutthestructureofthegroup.Itwasalsoprovedbythethirdauthorthatafinitesimplegroupcanbeuniquelydeterminedbyitscharactertable.Heretheauthorsattempttoinvestigatehowtocharacterizeafinitealmost-simplegroupbyusinglessinformationofitscharactertable,andsuccessfullycharacterizetheautomorphismgroupsofMathieugroupsbytheirordersandatmosttwoirreduciblecharacterdegreesoftheircharactertables.
简介:在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。它们都是以四则运算和常见的数量关系为基础,通过分析题里的数量关系,根据四则运算的意义列式解答的。但是,两种解答方法的解题思路却不同。由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理
简介:摘要:自古至今,人们对于宇宙的探索,前仆后继,不停脚步,不知耗费了多少人的心血,陨损了多少人的躯体?至今仍然迷途奔波、孜孜不倦。为了益于芸芸,此处对宇宙作一数学描述,建立一方程,以期有所依也、有所范也。虽是贻笑天下,愚亦乐乎。何以自诮自娱?——凡人之心、莫不如是,螃蟹首食、以为责也。
简介:摘 要 : 《极坐标与参数方程》是全国卷高考选考的重要内容,大部分学校都选这部分内容,而且《极坐标与参数方程》对必修中的圆锥曲线解题有很大的帮助。 极坐标方程和参数方程的综合问题一直是高考命题的热点,主要考查等价转换思想,代数式变形能力,逻辑思维推理能力,本文主要介绍的是将参数方程转化普通方程的高考常用的四种方法。