简介:摘要:针对目前常用的目标检测算法检测PCB板表面缺陷具有定位不准确、细小缺陷难以检测等问题,本文提出了多尺度特征融合的YOLO V3(Multiscale Feature Fusion,MFF-YOLO V3)PCB缺陷检测方法。受YOLO V3模型启发,通过设计卷积神经网络提取多尺度图像特征,将生成的多尺度特征进行融合以生成单尺度图像特征,然后运用聚类方法以实现对PCB板缺陷的准确定位。与YOLO V3不同在于,通过提高多尺度图像特征的分辨率并进行融合,提高了模型对PCB板微小缺陷的检测能力;为实现PCB板缺陷的精准定位,采用以AvgIOU为金标准的K-means算法实现候选目标区域的重定义。同时,由于MFF-YOLO V3实现了单输出以实现特征的提取,减小卷积层的层数,从而减小网络训练的计算量。通过在DeepPCB数据集上进行测试,其mAP较YOLO V3提升了9.2%,准确率达到了87.9%。实验表明,多尺度特征融合YOLO V3的PCB板表面缺陷检测方法能够更有效的检测PCB板缺陷,基本满足工业检测要求。
简介:ThecomplexK3H4GeW9V3O40·8H2OcrystallizedinamonocliiniesystemwithspacegroupP2,Mr=2784.67,a=11.099(3),b=16.452(4),c=13.534(4),β=108.14°,Z=2,V=2348.493,F(000):2456,μ=239.7cm-1,De=3.932g/cm3.ThefinalR=0.083for4528non-zeroreflexions.ThestructureofanionsGeW9V3O40andGeW9O34belongstoA--type.
简介:[目的/意义]随着奶牛养殖业向规模化、精准化和信息化养殖迅速发展,对奶牛健康的监测和管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时性不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了...