简介:Thispaperpropos-nologyintermsofthecharactersofagriculturaldecisionsupport,anddesignsamodelofDSSaboutproductionandsalesofagriculturalproducts.Themodeladoptsdecentralized+centralizeddistributednetworktopology.Inthedistributednetwork,eachnodeisaDSS.EveryDSSismadeupofmultipleagents,whichcanenhancetheinteractivityandintel-lectualityamongDSS.Inthemulti-agentsystem,weembedontologyintheagentsystem,whichhasthefollowingadvantages:enhancingthecoordinationandcommunicationbetweenagents,andstrengtheningthesemanticsofinformationandimprovingknowledgeshareandreuse.
简介:a scheduling algorithm can be characterized as an intelligent agent. The agent can make decisions based on the response from the environment and take action (computation). We name this agent computing agent. The dynamic integration of scheduling algorithms is the integration of different computing agents under the scheduling of a manager.,Of course we can not and need not design agents for each algorithm. But we can do that for each class. Our solution is to joint different classes of computing agents into a MASS to realize dynamic integration of scheduling algorithms. Except for a manager,A scheduling algorithm is a process of solving scheduling problems. The process needs to keep contact with the environment. Assembled with a rule base
简介:Theefficientandreliablehumancentereddesignofproductsandprocessesisamajorgoalinmanufacturingindustriesfornumeroushumanfactorsmustbetakenintoaccountduringtheentirelifecycleofproducts.Amulti-agentsintelligentdesignsystemispresentedformanufacturingprocesssimulationandproducts’ergonomicanalysis.Invirtualdesignenvironment,thevirtualhumanwithhigh-levelintelligenceperformstasks’operationautonomouslyandshowsoptimumpostureconfigurationwithergonomicassessmentresultsinrealtime.Thefunctionsarerealizedbyintelligentagentsarchitecturebasedonamodernapproachderivedfromfuzzymulti-objectsdecision-makingtheory.Acasestudyispresentedtodemonstratethefeasibilityofthesuggestedmethodology.
简介:Thispaperstudiesconsensusofaclassofheterogeneousmulti-agentsystemscomposedoffirst-orderandsecond-orderagentswithintermittentcommunication.Forleaderlessmulti-agentsystems,weproposeadistributedconsensusalgorithmbasedontheintermittentinformationofneighboringagents.Somesufficientconditionsareobtainedtoguaranteetheconsensusofheterogeneousmulti-agentsystemsintermsofbilinearmatrixinequalities(BMIs).Meanwhile,therelationshipbetweencommunicationdurationandeachcontrolperiodissoughtout.Moreover,thedesignedalgorithmisextendedtoleader-followingmulti-agentsystemswithoutvelocitymeasurements.Finally,theeffectivenessofthemainresultsisillustratedbynumericalsimulations.
简介:在在它的失败以后的一个舷侧电源系统(SPS)的电的网络的可配置性对电源供应的恢复中央并且改进SPS的survivability。航行过程创造不同操作条件的一个序列。一些负担的优先级在改变操作条件不同。在分析典型SPS的特征以后,一个模型被开发使用一个等级III总机和一个环境权衡轻重代理人(EPA)算法。当它逻辑地并且身体上象多代理人一样被分散,这个算法被选择面向。EPA算法被用来决定动态负担优先级,然后,最好遇见最大的电源供应负担选择了工具。模拟结果证明更高的优先级负担是第一被恢复。系统满足了所有必要限制,表明建议方法的有效性和有效性。
简介:复杂解决问题要求多样的专家知识和多重技术。为了解决如此的问题,人的专家包括两个的复杂多代理人系统和自治代理人,在许多应用程序域被要求。最复杂的多代理人系统在开的领域工作并且包括各种各样的异构的代理人。由于代理人的异质和工作环境的动态特征,代理人的专家知识和能力可能很好没在这些被估计并且介绍系统。因此,怎么从人、自治的专家发现有用知识,为专家的能力做更多的精确评价并且发现解决到来的问题(“专家采矿”)的合适的专家是在区域ofmulti代理人系统的重要研究问题。在这篇论文,我们在混合多代理人系统为知识和专家采矿介绍一条基于本体论的途径。在这研究,本体论被雇用描述系统的知识。当系统处理到来的问题,知识和专家采矿进程被执行。在这条途径,我们在multi-agentsystems嵌入更自我学习、自动调节的能力,以便在发现多代理人系统的异构的专家的知识帮助。
简介:InthispaperweproposeX-MAQoS,anovelXML-basedmulti-agentsystemfortheQoSmanagementintelecommunicationsnetworks.Thissystemischaracterizedbythefollowingfeatures:(i)ithandlesauserprofileandexploitsitjointlywithsuitablenetworkresourcemanagementtechniquestomaximizeusersatisfaction;(ii)itiscapableofoperatinginalargevarietyoftelecommunicationsnetworks;(iii)itissemi-automatic;(iv)itexploitsXMLforguaranteeingalight,versatileandstandardmechanismforinformationrepresentation,storingandexchange.Inthispaperthebasicfeaturesofthesystemarediscussedindetails.Furthermore,themainresultsofaperformanceevaluationstudyinUMTSenvironment,aimingatcomparingX-MAQoSwithalternativeagent-basedapproachesforhandlinguseraccesstotelecommunicationsnetworks,arereported.
简介:Inthispaper,theconsensusproblemforheterogeneousmulti-agentsystemscomposedoffirst-orderandsecond-orderagentsisinvestigatedwithdirectednetworktopologies.Basedonasystemtransformationmethod,thisconsensusproblemisturnedintoaconsensusproblemforhomogeneousmulti-agentsystems.Withcertainassumptiononthecontrolparameters,firstly,necessaryandsufficientconditionforconsensusisproposedwithfixedtopology.Secondly,sufficientconditionisproposedforheterogeneousmulti-agentsystemstoachieveconsensuswithswitchingtopologies.Finally,simulationexamplesarepresentedtoverifytheeffectivenessofthetheoreticalresults.
简介:这份报纸集中于多代理人系统(质量)的formability。这个问题涉及有能力驾驶包含到需要的形成的MAS的一个协议的存在,并且这样,具有在设计形成协议的必要重要性。Formability一妈取决于几个关键因素:动态结构,连接拓扑学,需要的形成的性质和可被考虑的控制设置了的代理人。这里考虑的团的代理人被一个将军描述连续线性时间不变(LTI)当模特儿。由使用矩阵分析和代数学的图理论,LTI团的formability上的一些必要、足够的条件被获得。这些条件关于一些典型、广泛地使用的可被考虑的协议集合在某感觉描绘formability,连接拓扑学,形成性质和代理人动力学的关系。
简介:Basedonthestrategyofinformationfeedbackfromfollowerstotheleader,flockingcontrolofagroupofagentswithaleaderisstudied.Theleadertracksapre-definedtrajectoryandatthesametimetheleaderusesthefeedbackinformationfromfollowerstotheleadertomodifyitsmotion.Theadvantageofthiscontrolschemeisthatitreducesthetrackingerrorsandimprovestherobustnessoftheteamcohesiontofollowers'faults.Theresultsofsimulationareprovidedtoillustratethatinformationfeedbackcanimprovetheperformanceofthesystem.
简介:自从它能改进生产率,一个有效预示的程序对复杂设备的预兆的维护关键,延长设备生活,并且提高系统安全。这份报纸基于背繁殖为精确失败预后建议一种新奇技术神经网络和量多代理人算法。由量计算理论和多代理人系统的广泛的研究启发了,这种技术采用量多代理人策略与包括健康评估,合作,转线路和变化的量代理人表示和几操作的主要特征,为神经网络到的参数优化避免象困住到本地最小的慢集中和责任那样的缺乏。验证建议途径的可行性,几个数字近似实验第一被设计,在哪个以后从辛辛那提大学的实验室的轴承的真实震动的数据被分析并且过去常为一个给定的未来点估计健康条件。结果是鼓励并且显示介绍预报方法有潜力在工业机械为失败预言作为一个评价工具被利用。
简介:在这份报纸,一个分布式的一致协议在一般固定指导拓扑学下面与测量噪音为分离时间的单个整数的多代理人系统被建议。变化时间的控制获得令人满意随机的近似条件被介绍稀释噪音,这样靠近环的多代理人系统是内在地一个线性变化时间的随机的差别系统。然后,吝啬的方形的一致集中分析基于Lyapunov技术被开发,并且Lyapunov函数的构造特别不要求为二次的Lyapunov功能的存在假定的典型平衡网络拓扑学条件。因此,建议一致协议能对更一般的联网的多代理人系统适用,特别地当在代理人之间的双向或平衡的信息交换没被要求时。在建议协议下面,每个代理人的状态在吝啬的平方收敛到其数学期望是起始的状态珍视的代理人的加权的一般水准的一个普通随机的变量,这被证明;同时,随机的变量变化被围住。
简介:Inthispaper,alocal-learningalgorithmformulti-agentispresentedbasedonthefactthatindividualagentperformslocalperceptionandlocalinteractionundergroupenvironment.Asforin-dividual-learning,agentadoptsgreedystrategytomaximizeitsrewardwheninteractingwithenvi-ronment.Ingroup-learning,localinteractiontakesplacebetweeneachtwoagents.Alocal-learningalgorithmtochooseandmodifyagents'actionsisproposedtoimprovethetraditionalQ-learningalgorithm,respectivelyinthesituationsofzero-sumgamesandgeneral-sumgameswithuniqueequi-libriumormulti-equilibrium.Andthislocal-learningalgorithmisprovedtobeconvergentandthecomputationcomplexityislowerthantheNash-Q.Additionally,throughgrid-gametest,itisindicatedthatbyusingthislocal-learningalgorithm,thelocalbehaviorsofagentscanspreadtoglobe.
简介:Usingagentdevelopmenttoolstoconstructanagent-basedsystemisawellappliedapproach.However,thedevelopmenttoolsusuallydonothavethefunctiontocheckthefeasibilityabouttheworkflowoftheagentsystemduringitimplementationstage.Therefore,todevelopanevaluationapproachtoanalyzethefeasibilityofadevelopingagentsystemsuchthattheimproperworkflowofanagentsystemcanbefoundintheearlydesignstageisanecessarytasktoreducetheriskofimplementation.Inthisresearch,aPetriNet(PN)basedthree-stageevaluationapproachwasdeveloped.Intheconceptualstage,thepitfallofthecurrentagentsystemdevelopingprocesswasexaminedandanimprovementanalysisprocesswasspecified.Then,inthesystemdesignstage,anevaluationapproachwhichextractedtheprocesslogfilefromadevelopingagentsystemintoaPNmodelintermsofaprocessminingapproach-αalgorithmwasproposed.ThismodelwassimulatedinaPNsimulationpackage.TheagentsystemperformancewasevaluatedintermsofanalyzingthedeadlockphenomenaofthePNmodel.Finally,intheimplementationstage,theproposedconceptwasimplementedbyusinganagentdevelopingtoolJADEandaPNsimulationtoolCPN.Anagent-basedroboticassemblysystemwasusedtoexaminethepossibledeadlockoftheagentsystem.
简介:Thispaperconsidersamulti-agenttrackingproblemforahigh-dimensionalactiveleaderandvariableinterconnectiontopology.Thestateoftheleadernotonlykeepschangingbutalsomaynotbemeasured.Toestimatethestatesuchaleaderindividually,aneighbor-basedlocalcontrollertogetherwithaneighbor-basedstate-estimationruleisgivenforeachautonomousagent.Then,theauthorsprovethat,withthehelpofaconstructedcommonLyapunovfunction(CLF),eachagentcantracktheactiveleaderwithunmeasurablestates.Finally,theauthorsexplicitlyconstructaCLFforanactiveleaderwithunknownperiodicinputforillustration.